Development of a novel oncolytic adenovirus controlled by CDX2 promoter for esophageal adenocarcinoma therapy

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

Article  PubMed  Google Scholar 

National Cancer Institute. Surveillance, Epidemiology, and End Results Program. SEER*Explorer: an interactive website for SEER cancer statistics. https://seer.cancer.gov. Accessed April 22, 2022.

Peng D, Zaika A, Que J, El, et al. The antioxidant response in Barrett’s tumorigenesis: a double-edged sword. Redox Biol. 2021;41: 101894.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

Article  PubMed  Google Scholar 

Joseph A, Raja S, Kamath S, et al. Esophageal adenocarcinoma: a dire need for early detection and treatment. Cleve Clin J Med. 2022;89:269–79.

Article  PubMed  Google Scholar 

Donlon NE, Moran B, Kamilli A, et al. CROSS versus FLOT regimens in esophageal and esophagogastric junction adenocarcinoma: a propensity-matched comparison. Ann Surg. 2022;276:792–8.

Article  PubMed  Google Scholar 

Eyck BM, Van Lanschot JJ, Hulshof MCCM, CROSS Study Group, et al. Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: the randomized controlled CROSS trial. J Clin Oncol. 2021;39:1995–2004.

Article  CAS  PubMed  Google Scholar 

Elliott JA, Klevebro F, Mantziari S, ENSURE Study Group, et al. Neoadjuvant chemoradiotherapy versus chemotherapy for the treatment of locally advanced esophageal adenocarcinoma in the european multicenter ENSURE study. Ann Surg. 2023;278:692–700.

PubMed  Google Scholar 

Howells A, Marelli G, Lemoine NR, et al. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:195.

Article  PubMed  PubMed Central  Google Scholar 

Yamamoto M, Alemany R, Adachi Y, et al. Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers. Mol Ther. 2001;3:385–94.

Article  CAS  PubMed  Google Scholar 

Yamamoto M, Davydova J, Wang M, Siegal GP, Krasnykh V, Vickers SM, Curiel DT. Infectivity enhanced, cyclooxygenase-2 promoter-based conditionally replicative adenovirus for pancreatic cancer. Gastroenterology. 2003;125:1203–18.

Article  CAS  PubMed  Google Scholar 

Davydova J, Le LP, Gavrikova T, et al. Infectivity-enhanced cyclooxygenase-2-based conditionally replicative adenoviruses for esophageal adenocarcinoma treatment. Cancer Res. 2004;64:4319–27.

Article  CAS  PubMed  Google Scholar 

Sato-Dahlman M, Miura Y, Huang JL, et al. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget. 2017;8:76044–56.

Article  PubMed  PubMed Central  Google Scholar 

Li S, Hoefnagel SJM, Krishnadath KK. Molecular biology and clinical management of esophageal adenocarcinoma. Cancers (Basel). 2023;15:5410.

Article  CAS  PubMed  Google Scholar 

Silberg DG, Swain GP, Suh ER, et al. Cdx1 and cdx2 expression during intestinal development. Gastroenterology. 2000;119:961–71.

Article  CAS  PubMed  Google Scholar 

Eda A, Osawa H, Satoh K, et al. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003;38:14–22.

Article  CAS  PubMed  Google Scholar 

Lord RV, Brabender J, Wickramasinghe K, et al. Increased CDX2 and decreased PITX1 homeobox gene expression in Barrett’s esophagus and Barrett’s-associated adenocarcinoma. Surgery. 2005;138:924–31.

Article  PubMed  Google Scholar 

Hong J, Behar J, Wands J, et al. Bile acid reflux contributes to development of esophageal adenocarcinoma via activation of phosphatidylinositol-specific phospholipase Cgamma2 and NADPH oxidase NOX5-S. Cancer Res. 2010;70:1247–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia HH-X, Zhang ST, Lam SK, et al. Expression of macrophage migration inhibitory factor in esophageal squamous cell carcinoma and effects of bile acids and NSAIDs. Carcinogenesis. 2005;26:11–5.

Article  CAS  PubMed  Google Scholar 

Kazumori H, Ishihara S, Rumi MAK, et al. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut. 2006;55:16–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roman S, Petre A, Thepot A, et al. Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture. Am J Physiol. 2007;293:G45-53.

CAS  Google Scholar 

Morrow DJ, Avissar NE, Toia L, et al. Pathogenesis of Barrett’s esophagus: bile acids inhibit the Notch signaling pathway with induction of CDX2 gene expression in human esophageal cells. Surgery. 2009;146:714–21.

Article  PubMed  Google Scholar 

Huang J, Liu H, Sun T, et al. Omeprazole prevents CDX2 and SOX9 expression by inhibiting hedgehog signaling in Barrett’s esophagus cells. Clin Sci (Lond). 2019;133:483–95.

Article  CAS  PubMed  Google Scholar 

Huo X, Zhang HY, Zhang XI, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett’s esophagus. Gastroenterology. 2010;139:194–203.

Article  CAS  PubMed  Google Scholar 

Yoshida H, Sato-Dahlman M, Hajeri P, et al. Mutant myogenin promoter-controlled oncolytic adenovirus selectively kills PAX3-FOXO1-positive rhabdomyosarcoma cells. Transl Oncol. 2021;14: 100997.

Article  CAS  PubMed  Google Scholar 

Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:390–405.

Article  PubMed  Google Scholar 

Sjoquist KM, Burmeister BH, Smithers BM, Australasian Gastro-Intestinal Trials Group, et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 2011;12:681–92.

Article  PubMed  Google Scholar 

Sihag S, Nobel T, Hsu M, et al. Survival after trimodality therapy in patients with locally advanced esophagogastric adenocarcinoma: does only a complete pathologic response matter? Ann Surg. 2022;276:1017–22.

Article  PubMed  Google Scholar 

LaRocca CJ, Salzwedel AO, Sato-Dahlman M, et al. Interferon alpha-expressing oncolytic adenovirus for treatment of esophageal adenocarcinoma. Ann Surg Oncol. 2021;28:8556–64.

Article  PubMed  PubMed Central  Google Scholar 

Villanacci V, Rossi E, Zambelli C, et al. COX-2, CDX2, and CDC2 immunohistochemical assessment for dysplasia-carcinoma progression in Barrett’s esophagus. Dig Liver Dis. 2007;39:305–11.

Article  CAS  PubMed  Google Scholar 

Brabender J, Marjoram P, Lord RV, et al. The molecular signature of normal squamous esophageal epithelium identifies the presence of a field effect and can discriminate between patients with Barrett’s esophagus and patients with Barrett’s-associated adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2005;14:2113–7.

Article  CAS  PubMed  Google Scholar 

Silberg DG, Furth EE, Taylor JK, et al. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology. 1997;113:478–86.

Article  CAS  PubMed  Google Scholar 

Moons LM, Bax DA, Kuipers EJ, Siersema PD, Kusters JG, et al. The homeodomain protein CDX2 is an early marker of Barrett’s oesophagus. J Clin Pathol. 2004;57:1063–8.

Article 

Comments (0)

No login
gif