Association between fatty acid metabolism gene mutations and Mycobacterium tuberculosis transmission revealed by whole genome sequencing

Rylance J, Pai M, Lienhardt C, Garner P. Priorities for Tuberculosis research: a systematic review. Lancet Infect Dis. 2010;10:886–92.

Article  PubMed  Google Scholar 

Furin J, Cox H, Pai M, Tuberculosis. The Lancet. 2019;393:1642–56.

Article  Google Scholar 

Linh NN, Viney K, Gegia M, Falzon D, Glaziou P, Floyd K, et al. World Health Organization treatment outcome definitions for Tuberculosis: 2021 update. Eur Respir J. 2021;58:2100804.

Article  PubMed  Google Scholar 

Atamna-Mawassi H, HuBerman-Samuel M, Hershcovitz S, Karny-Epstein N, Kola A, Cortés LEL, et al. Interventions to reduce Infections caused by multidrug resistant Enterobacteriaceae (MDR-E): a systematic review and meta-analysis. J Infect. 2021;83:156–66.

Article  CAS  PubMed  Google Scholar 

Van Rie A, Enarson D. XDR Tuberculosis: an indicator of public-health negligence. Lancet. 2006;368:1554–6.

Article  PubMed  Google Scholar 

World Health Organization. Global Tuberculosis report 2016. Geneva: World Health Organization; 2016.

Google Scholar 

Singh V, Mani I, Chaudhary DK, Somvanshi P. The β-ketoacyl-ACP synthase from Mycobacterium tuberculosis as potential drug targets. Curr Med Chem. 2011;18:1318–24.

Article  CAS  PubMed  Google Scholar 

Nazarova EV, Montague CR, Huang L, La T, Russell D, VanderVen BC. The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. Elife. 2019;8:e43621.

Article  PubMed  PubMed Central  Google Scholar 

Laval T, Chaumont L, Demangel C. Not too fat to fight: the emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev. 2021;301:84–97.

Article  CAS  PubMed  Google Scholar 

Kinsella RJ, Fitzpatrick DA, Creevey CJ, McInerney JO. Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc Natl Acad Sci USA. 2003;100:10320–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salaemae W, Azhar A, Booker GW, Polyak SW. Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention. Protein Cell. 2011;2:691–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grimes KD, Aldrich CC. A high-throughput screening fluorescence polarization assay for fatty acid adenylating enzymes in Mycobacterium tuberculosis. Anal Biochem. 2011;417:264–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sacco E, Covarrubias AS, O’Hare HM, Carroll P, Eynard N, Jones TA, et al. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2007;104:14628–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–8.

Article  CAS  PubMed  Google Scholar 

Alonso Rodríguez N, Martínez Lirola M, Chaves F, lñigo J, Herranz M, Ritacco V, et al. Differences in the robustness of clusters involving the Mycobacterium tuberculosis strains most frequently isolated from immigrant cases in Madrid. Clin Microbiol Infect. 2010;16:1544–54.

Article  PubMed  Google Scholar 

Akhmetova A, Kozhamkulov U, Bismilda V, Chingissova L, Abildaev T, Dymova M, et al. Mutations in the < I > pnc A and < I > rps a genes among 77 < I > Mycobacterium tuberculosis isolates in Kazakhstan. int j Tuberc lung dis. 2015;19:179–84.

Article  CAS  PubMed  Google Scholar 

Vallejos-Sánchez K, Lopez JM, Antiparra R, Toscano E, Saavedra H, Kirwan DE, et al. Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid. Sci Rep. 2020;10:8356.

Article  PubMed  PubMed Central  Google Scholar 

Singh A, Somvanshi P, Grover A. Pyrazinamide drug resistance in RpsA mutant (∆438A) of Mycobacterium tuberculosis: Dynamics of essential motions and free-energy landscape analysis. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.28013

Article  PubMed  PubMed Central  Google Scholar 

Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis. 2003;9:838–45.

Article  PubMed  Google Scholar 

Olano J, López B, Reyes A, del Pilar Lemos M, Correa N, Del Portillo P, et al. Mutations in DNA repair genes are associated with the Haarlem lineage of Mycobacterium tuberculosis independently of their antibiotic resistance. Tuberculosis. 2007;87:502–8.

Article  CAS  PubMed  Google Scholar 

Mestre O, Luo T, Dos Vultos T, Kremer K, Murray A, Namouchi A, et al. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair. PLoS ONE. 2011;6:e16020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miggiano R, Perugino G, Ciaramella M, Serpe M, Rejman D, Páv O, et al. Crystal structure of Mycobacterium tuberculosis O 6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA. Biochem J. 2016;473:123–33.

Article  CAS  PubMed  Google Scholar 

Rad ME, Bifani P, Martin C, Kremer K, Samper S, Rauzier J et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing Family. Emerg Infect Dis. 2003;9.

Hu K, Jordan AT, Zhang S, Dhabaria A, Kovach A, Rangel MV et al. Characterization of guided entry of tail-anchored proteins 3 homologues in Mycobacterium tuberculosis. J Bacteriol. 2019;201.

Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606:725–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foox J, Tighe SW, Nicolet CM, Zook JM, Byrska-Bishop M, Clarke WE, et al. Performance assessment of DNA sequencing platforms in the ABRF Next-Generation sequencing study. Nat Biotechnol. 2021;39:1129–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, He G, Wang S, Lin S, Chen J, Zhang W. Evaluation of whole-genome sequence method to Diagnose Resistance of 13 anti-tuberculosis Drugs and characterize resistance genes in clinical Multi-drug Resistance Mycobacterium tuberculosis isolates from China. Front Microbiol. 2019;10:1741.

Article  PubMed  PubMed Central  Google Scholar 

Yang C, Luo T, Shen X, Wu J, Gan M, Xu P, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis. 2017;17:275–84.

Article  CAS  PubMed  Google Scholar 

Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet. 2013;45:1255–60.

Article  CAS  PubMed  Google Scholar 

Hicks ND, Yang J, Zhang X, Zhao B, Grad YH, Liu L, et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nat Microbiol. 2018;3:1032–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, et al. China’s Tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol. 2018;2:1982–92.

Article  PubMed  PubMed Central  Google Scholar 

Huang H, Ding N, Yang T, Li C, Jia X, Wang G, et al. Cross-sectional whole-genome sequencing and epidemiological study of Multidrug-resistant Mycobacterium tuberculosis in China. Clin Infect Dis. 2019;69:405–13.

Article  CAS  PubMed  Google Scholar 

Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci USA. 2015;112:8136–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Q, Liu Q, Ji L, Li J, Zeng Y, Meng L, et al. Citywide transmission of Multidrug-resistant Tuberculosis under China’s Rapid Urbanization: a Retrospective Population-based genomic spatial epidemiological study. Clin Infect Dis. 2020;71:142–51.

Article  PubMed  Google Scholar 

Jung Y, Han D, BWA-MEME. BWA-MEM emulated with a machine learning approach. Bioinformatics. 2022;:btac137.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

Article  PubMed  PubMed Central  Google Scholar 

Liu F, Zhang Y, Zhang L, Li Z, Fang Q, Gao R, et al. Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data. Genome Biol. 2019;20:242.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.

Article 

Comments (0)

No login
gif