The SMYD3-dependent H3K4me3 status of IGF2 intensifies local Th2 differentiation in CRSwNP via positive feedback

Kato A. Group 2 innate lymphoid cells in airway diseases. Chest. 2019;156(1):141–9. https://doi.org/10.1016/j.chest.2019.04.101.

Article  PubMed  PubMed Central  Google Scholar 

Abbas EE, Li C, Xie A, Lu S, Tang L, Liu Y, et al. Distinct clinical pathology and microbiota in chronic rhinosinusitis with nasal polyps endotypes. Laryngoscope. 2021;131(1):E34–44. https://doi.org/10.1002/lary.28858.

Article  CAS  PubMed  Google Scholar 

Lou H, Meng Y, Piao Y, Wang C, Zhang L, Bachert C. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population. Am J Rhinol Allergy. 2015;29(5):350–6. https://doi.org/10.2500/ajra.2015.29.4231.

Article  PubMed  Google Scholar 

Wang M, Zhang N, Zheng M, Li Y, Meng L, Ruan Y, et al. Cross-talk between T(H)2 and T(H)17 pathways in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2019;144(5):1254–64. https://doi.org/10.1016/j.jaci.2019.06.023.

Article  CAS  PubMed  Google Scholar 

Krabbendam L, Bal SM, Spits H, Golebski K. New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol Rev. 2018;286(1):74–85. https://doi.org/10.1111/imr.12708.

Article  CAS  PubMed  Google Scholar 

Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017;12:331–57. https://doi.org/10.1146/annurev-pathol-052016-100401.

Article  CAS  PubMed  Google Scholar 

Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449-56 e4. https://doi.org/10.1016/j.jaci.2015.12.1324.

Article  CAS  PubMed  Google Scholar 

Wang X, Zhang N, Bo M, Holtappels G, Zheng M, Lou H, et al. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344–53. https://doi.org/10.1016/j.jaci.2016.05.041.

Article  CAS  PubMed  Google Scholar 

Kanno Y, Vahedi G, Hirahara K, Singleton K, O’Shea JJ. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol. 2012;30:707–31. https://doi.org/10.1146/annurev-immunol-020711-075058.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A. 2010;107(7):2926–31. https://doi.org/10.1073/pnas.0909344107.

Article  PubMed  PubMed Central  Google Scholar 

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37. https://doi.org/10.1016/j.cell.2007.05.009.

Article  CAS  PubMed  Google Scholar 

Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):1045–8. https://doi.org/10.1038/nbt1010-1045.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. https://doi.org/10.1038/nature05874.

Article  CAS  Google Scholar 

Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 2007;17(6):691–707. https://doi.org/10.1101/gr.5704207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A. 2002;99(13):8695–700. https://doi.org/10.1073/pnas.082249499.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noma K, Grewal SI. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci U S A. 2002;99(Suppl 4):16438–45. https://doi.org/10.1073/pnas.182436399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6(8):731–40. https://doi.org/10.1038/ncb1151.

Article  CAS  PubMed  Google Scholar 

Asuthkar S, Venkataraman S, Avilala J, Shishido K, Vibhakar R, Veo B, et al. SMYD3 promotes cell cycle progression by inducing cyclin D3 transcription and stabilizing the cyclin D1 protein in medulloblastoma. Cancers (Basel). 2022;14(7):1673. https://doi.org/10.3390/cancers14071673.

Article  CAS  PubMed  Google Scholar 

Peserico A, Germani A, Sanese P, Barbosa AJ, Di Virgilio V, Fittipaldi R, et al. A SMYD3 small-molecule inhibitor impairing cancer cell growth. J Cell Physiol. 2015;230(10):2447–60. https://doi.org/10.1002/jcp.24975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fabini E, Manoni E, Ferroni C, Rio AD, Bartolini M. Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends. Future Med Chem. 2019;11(8):901–21. https://doi.org/10.4155/fmc-2018-0380.

Article  CAS  PubMed  Google Scholar 

DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991;64(4):849–59. https://doi.org/10.1016/0092-8674(91)90513-x.

Article  CAS  PubMed  Google Scholar 

Selenou C, Brioude F, Giabicani E, Sobrier ML, Netchine I. IGF2: development, genetic and epigenetic abnormalities. Cells. 2022;11(12):1886. https://doi.org/10.3390/cells11121886.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Y, Lyu T, Che X, Jia N, Li Q, Feng W. Overexpression of SMYD3 in ovarian cancer is associated with ovarian cancer proliferation and apoptosis via methylating H3K4 and H4K20. J Cancer. 2019;10(17):4072–84. https://doi.org/10.7150/jca.29861.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kidd CD, Thompson PJ, Barrett L, Baltic S. Histone Modifications and asthma. The interface of the epigenetic and genetic landscapes. Am J Respir Cell Mol Biol. 2016;54(1):3–12. https://doi.org/10.1165/rcmb.2015-0050TR.

Article  CAS  PubMed  Google Scholar 

Hartnell A, Heinemann A, Conroy DM, Wait R, Sturm GJ, Caversaccio M, et al. Identification of selective basophil chemoattractants in human nasal polyps as insulin-like growth factor-1 and insulin-like growth factor-2. J Immunol. 2004;173(10):6448–57. https://doi.org/10.4049/jimmunol.173.10.6448.

Article  CAS  PubMed  Google Scholar 

Hansenne I, Renard-Charlet C, Greimers R, Geenen V. Dendritic cell differentiation and immune tolerance to insulin-related peptides in Igf2-deficient mice. J Immunol. 2006;176(8):4651–7. https://doi.org/10.4049/jimmunol.176.8.4651.

Article  CAS  PubMed  Google Scholar 

Kooijman R, van Buul-Offers SC, Scholtens LE, Schuurman HJ, Van den Brande LJ, Zegers BJ. T cell development in insulin-like growth factor-II transgenic mice. J Immunol. 1995;154(11):5736–45.

Article  CAS  PubMed  Google Scholar 

Kecha O, Brilot F, Martens H, Franchimont N, Renard C, Greimers R, et al. Involvement of insulin-like growth factors in early T cell development: a study using fetal thymic organ cultures. Endocrinology. 2000;141(3):1209–17. https://doi.org/10.1210/endo.141.3.7360.

Article  CAS  PubMed  Google Scholar 

Du L, Lin L, Li Q, Liu K, Huang Y, Wang X, et al. IGF-2 preprograms maturing macrophages to acquire oxidative phosphorylation-dependent anti-inflammatory properties. Cell Metab. 2019;29(6):1363-75 e8. https://doi.org/10.1016/j.cmet.2019.01.006.

Article  CAS  PubMed  Google Scholar 

Kermani H, Goffinet L, Mottet M, Bodart G, Morrhaye G, Dardenne O, et al. Expression of the growth hormone/insulin-like growth factor axis during Balb/c thymus ontogeny and effects of growth hormone upon ex vivo T cell differentiation. NeuroImmunoModulation. 2012;19(3):137–47. https://doi.org/10.1159/000328844.

Article  CAS  PubMed  Google Scholar 

Lv J, Liu C, Chen FK, Feng ZP, Jia L, Liu PJ, et al. M2-like tumour-associated macrophage-secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep. 2021;24(2):1–10. https://doi.org/10.3892/mmr.2021.12249.

Article  CAS  Google Scholar 

Chao R, Li D, Yue Z, Huang C, Kou Y, Zhou Q, et al. Interleukin-4 restores insulin sensitivity in insulin-resistant osteoblasts by increasing the expression of insulin receptor substrate 1. Biochemistry (Mosc). 2020;85(3):334–43. https://doi.org/10.1134/S0006297920030098.

Comments (0)

No login
gif