Kato A. Group 2 innate lymphoid cells in airway diseases. Chest. 2019;156(1):141–9. https://doi.org/10.1016/j.chest.2019.04.101.
Article PubMed PubMed Central Google Scholar
Abbas EE, Li C, Xie A, Lu S, Tang L, Liu Y, et al. Distinct clinical pathology and microbiota in chronic rhinosinusitis with nasal polyps endotypes. Laryngoscope. 2021;131(1):E34–44. https://doi.org/10.1002/lary.28858.
Article CAS PubMed Google Scholar
Lou H, Meng Y, Piao Y, Wang C, Zhang L, Bachert C. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population. Am J Rhinol Allergy. 2015;29(5):350–6. https://doi.org/10.2500/ajra.2015.29.4231.
Wang M, Zhang N, Zheng M, Li Y, Meng L, Ruan Y, et al. Cross-talk between T(H)2 and T(H)17 pathways in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2019;144(5):1254–64. https://doi.org/10.1016/j.jaci.2019.06.023.
Article CAS PubMed Google Scholar
Krabbendam L, Bal SM, Spits H, Golebski K. New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol Rev. 2018;286(1):74–85. https://doi.org/10.1111/imr.12708.
Article CAS PubMed Google Scholar
Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017;12:331–57. https://doi.org/10.1146/annurev-pathol-052016-100401.
Article CAS PubMed Google Scholar
Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449-56 e4. https://doi.org/10.1016/j.jaci.2015.12.1324.
Article CAS PubMed Google Scholar
Wang X, Zhang N, Bo M, Holtappels G, Zheng M, Lou H, et al. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344–53. https://doi.org/10.1016/j.jaci.2016.05.041.
Article CAS PubMed Google Scholar
Kanno Y, Vahedi G, Hirahara K, Singleton K, O’Shea JJ. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol. 2012;30:707–31. https://doi.org/10.1146/annurev-immunol-020711-075058.
Article CAS PubMed PubMed Central Google Scholar
Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A. 2010;107(7):2926–31. https://doi.org/10.1073/pnas.0909344107.
Article PubMed PubMed Central Google Scholar
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37. https://doi.org/10.1016/j.cell.2007.05.009.
Article CAS PubMed Google Scholar
Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):1045–8. https://doi.org/10.1038/nbt1010-1045.
Article CAS PubMed PubMed Central Google Scholar
Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. https://doi.org/10.1038/nature05874.
Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 2007;17(6):691–707. https://doi.org/10.1101/gr.5704207.
Article CAS PubMed PubMed Central Google Scholar
Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A. 2002;99(13):8695–700. https://doi.org/10.1073/pnas.082249499.
Article CAS PubMed PubMed Central Google Scholar
Noma K, Grewal SI. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci U S A. 2002;99(Suppl 4):16438–45. https://doi.org/10.1073/pnas.182436399.
Article CAS PubMed PubMed Central Google Scholar
Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6(8):731–40. https://doi.org/10.1038/ncb1151.
Article CAS PubMed Google Scholar
Asuthkar S, Venkataraman S, Avilala J, Shishido K, Vibhakar R, Veo B, et al. SMYD3 promotes cell cycle progression by inducing cyclin D3 transcription and stabilizing the cyclin D1 protein in medulloblastoma. Cancers (Basel). 2022;14(7):1673. https://doi.org/10.3390/cancers14071673.
Article CAS PubMed Google Scholar
Peserico A, Germani A, Sanese P, Barbosa AJ, Di Virgilio V, Fittipaldi R, et al. A SMYD3 small-molecule inhibitor impairing cancer cell growth. J Cell Physiol. 2015;230(10):2447–60. https://doi.org/10.1002/jcp.24975.
Article CAS PubMed PubMed Central Google Scholar
Fabini E, Manoni E, Ferroni C, Rio AD, Bartolini M. Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends. Future Med Chem. 2019;11(8):901–21. https://doi.org/10.4155/fmc-2018-0380.
Article CAS PubMed Google Scholar
DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991;64(4):849–59. https://doi.org/10.1016/0092-8674(91)90513-x.
Article CAS PubMed Google Scholar
Selenou C, Brioude F, Giabicani E, Sobrier ML, Netchine I. IGF2: development, genetic and epigenetic abnormalities. Cells. 2022;11(12):1886. https://doi.org/10.3390/cells11121886.
Article CAS PubMed PubMed Central Google Scholar
Jiang Y, Lyu T, Che X, Jia N, Li Q, Feng W. Overexpression of SMYD3 in ovarian cancer is associated with ovarian cancer proliferation and apoptosis via methylating H3K4 and H4K20. J Cancer. 2019;10(17):4072–84. https://doi.org/10.7150/jca.29861.
Article CAS PubMed PubMed Central Google Scholar
Kidd CD, Thompson PJ, Barrett L, Baltic S. Histone Modifications and asthma. The interface of the epigenetic and genetic landscapes. Am J Respir Cell Mol Biol. 2016;54(1):3–12. https://doi.org/10.1165/rcmb.2015-0050TR.
Article CAS PubMed Google Scholar
Hartnell A, Heinemann A, Conroy DM, Wait R, Sturm GJ, Caversaccio M, et al. Identification of selective basophil chemoattractants in human nasal polyps as insulin-like growth factor-1 and insulin-like growth factor-2. J Immunol. 2004;173(10):6448–57. https://doi.org/10.4049/jimmunol.173.10.6448.
Article CAS PubMed Google Scholar
Hansenne I, Renard-Charlet C, Greimers R, Geenen V. Dendritic cell differentiation and immune tolerance to insulin-related peptides in Igf2-deficient mice. J Immunol. 2006;176(8):4651–7. https://doi.org/10.4049/jimmunol.176.8.4651.
Article CAS PubMed Google Scholar
Kooijman R, van Buul-Offers SC, Scholtens LE, Schuurman HJ, Van den Brande LJ, Zegers BJ. T cell development in insulin-like growth factor-II transgenic mice. J Immunol. 1995;154(11):5736–45.
Article CAS PubMed Google Scholar
Kecha O, Brilot F, Martens H, Franchimont N, Renard C, Greimers R, et al. Involvement of insulin-like growth factors in early T cell development: a study using fetal thymic organ cultures. Endocrinology. 2000;141(3):1209–17. https://doi.org/10.1210/endo.141.3.7360.
Article CAS PubMed Google Scholar
Du L, Lin L, Li Q, Liu K, Huang Y, Wang X, et al. IGF-2 preprograms maturing macrophages to acquire oxidative phosphorylation-dependent anti-inflammatory properties. Cell Metab. 2019;29(6):1363-75 e8. https://doi.org/10.1016/j.cmet.2019.01.006.
Article CAS PubMed Google Scholar
Kermani H, Goffinet L, Mottet M, Bodart G, Morrhaye G, Dardenne O, et al. Expression of the growth hormone/insulin-like growth factor axis during Balb/c thymus ontogeny and effects of growth hormone upon ex vivo T cell differentiation. NeuroImmunoModulation. 2012;19(3):137–47. https://doi.org/10.1159/000328844.
Article CAS PubMed Google Scholar
Lv J, Liu C, Chen FK, Feng ZP, Jia L, Liu PJ, et al. M2-like tumour-associated macrophage-secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep. 2021;24(2):1–10. https://doi.org/10.3892/mmr.2021.12249.
Chao R, Li D, Yue Z, Huang C, Kou Y, Zhou Q, et al. Interleukin-4 restores insulin sensitivity in insulin-resistant osteoblasts by increasing the expression of insulin receptor substrate 1. Biochemistry (Mosc). 2020;85(3):334–43. https://doi.org/10.1134/S0006297920030098.
Comments (0)