Human mesenchymal stroma/stem-like cell-derived taxol-loaded EVs/exosomes transfer anti-tumor microRNA signatures and express enhanced SDF-1-mediated tumor tropism

Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 2012;21:1299–308.

Article  CAS  PubMed  Google Scholar 

Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG, Sensebe L. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT(R)) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–24.

Article  CAS  PubMed  Google Scholar 

Guimaraes-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, Rockenstein E, Masliah E, Peterson KL, Stallcup WB, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20(345–359):e345.

Article  Google Scholar 

Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22.

Article  PubMed  PubMed Central  Google Scholar 

Squillaro T, Peluso G, Galderisi U. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant. 2016;25:829–48.

Article  PubMed  Google Scholar 

Scuteri A, Monfrini M: Mesenchymal Stem Cells as New Therapeutic Approach for Diabetes and Pancreatic Disorders. Int J Mol Sci 2018, 19.

Golchin A, Farahany TZ, Khojasteh A, Soleimanifar F, Ardeshirylajimi A. The Clinical Trials of Mesenchymal Stem Cell Therapy in Skin Diseases: An Update and Concise Review. Curr Stem Cell Res Ther. 2019;14:22–33.

Article  CAS  PubMed  Google Scholar 

Melzer C, Yang Y, Hass R. Interaction of MSC with tumor cells. Cell Commun Signal. 2016;14:20.

Article  PubMed  PubMed Central  Google Scholar 

von der Ohe J, Hass R. In Vitro Fusion of Normal and Neoplastic Breast Epithelial Cells with Human Mesenchymal Stroma/Stem Cells Partially Involves Tumor Necrosis Factor Receptor Signaling. Stem Cells. 2018;36:12.

Google Scholar 

Melzer C vdOJ, Hass R. : In vivo cell fusion between mesenchymal stroma/stem-like cells and breast cancer cells. Cancers 2019, 11.

Hass R, von der Ohe J, Dittmar T: Cancer Cell Fusion and Post-Hybrid Selection Process (PHSP). Cancers (Basel) 2021, 13.

Dittmar T, Sieler M, Hass R. Why do certain cancer cells alter functionality and fuse? Biol Chem. 2023;404:951–60.

Article  CAS  PubMed  Google Scholar 

Hass R, von der Ohe J, Ungefroren H: Impact of the Tumor Microenvironment on Tumor Heterogeneity and Consequences for Cancer Cell Plasticity and Stemness. Cancers (Basel) 2020, 12.

Melzer C, Ohe JV, Hass R: Altered Tumor Plasticity after Different Cancer Cell Fusions with MSC. Int J Mol Sci 2020, 21.

Shi Y, Riese DJ 2nd, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol. 2020;11:574667.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melzer C, Jacobs R, Dittmar T, Pich A, von der Ohe J, Yang Y, Hass R: Reversible Growth-Arrest of a Spontaneously-Derived Human MSC-Like Cell Line. Int J Mol Sci 2020, 21.

Melzer C, Ohe JV, Hass R: Anti-Tumor Effects of Exosomes Derived from Drug-Incubated Permanently Growing Human MSC. Int J Mol Sci 2020, 21.

Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20:332–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, Soria CE, Oquin S, Bonebreak CM, Saracoglu E, et al. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013;394:1253–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tkach M, Thery C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164:1226–32.

Article  CAS  PubMed  Google Scholar 

Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017;35:851–8.

Article  CAS  PubMed  Google Scholar 

Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V: Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells 2019, 8.

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

Article  CAS  PubMed  Google Scholar 

Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9. https://doi.org/10.1261/rna.2183803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oom AL, Humphries BA, Yang C. MicroRNAs: novel players in cancer diagnosis and therapies. Biomed Res Int. 2014;2014:959461.

Article  PubMed  PubMed Central  Google Scholar 

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432:231–5.

Article  CAS  PubMed  Google Scholar 

Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol. 2015;25:137–47.

Article  CAS  PubMed  Google Scholar 

Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol. 2020;10:581007.

Article  PubMed  PubMed Central  Google Scholar 

Majore I, Moretti P, Hass R, Kasper C. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal. 2009;7:6.

Article  PubMed  PubMed Central  Google Scholar 

Otte A, Bucan V, Reimers K, Hass R. Mesenchymal stem cells maintain long-term in vitro stemness during explant culture. Tissue Eng Part C Methods. 2013;19:937–48.

Article  CAS  PubMed  Google Scholar 

Yang Y, Melzer C, Bucan V, von der Ohe J, Otte A, Hass R. Conditioned umbilical cord tissue provides a natural three-dimensional storage compartment as in vitro stem cell niche for human mesenchymal stroma/stem cells. Stem Cell Res Ther. 2016;7:28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertram C, Hass R. Cellular senescence of human mammary epithelial cells (HMEC) is associated with an altered MMP-7/HB-EGF signaling and increased formation of elastin-like structures. Mech Ageing Dev. 2009;130:657–69.

Article  CAS  PubMed  Google Scholar 

Otte A, Gohring G, Steinemann D, Schlegelberger B, Groos S, Langer F, Kreipe HH, Schambach A, Neumann T, Hillemanns P, et al. A tumor-derived population (SCCOHT-1) as cellular model for a small cell ovarian carcinoma of the hypercalcemic type. Int J Oncol. 2012;41:765–75.

Article  CAS  PubMed  Google Scholar 

Melzer C, Rehn V, Yang Y, Bahre H, von der Ohe J, Hass R: Taxol-Loaded MSC-Derived Exosomes Provide a Therapeutic Vehicle to Target Metastatic Breast Cancer and Other Carcinoma Cells. Cancers (Basel) 2019, 11.

Mandel K, Yang Y, Schambach A, Glage S, Otte A, Hass R. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem Cells Dev. 2013;22:3114–27.

Article  CAS  PubMed 

Comments (0)

No login
gif