P2 X 7 receptor is a critical regulator of extracellular ATP-induced profibrotic genes expression in rat kidney: implication of transforming growth factor-β/Smad signaling pathway

Agteresch HJ, Dagnelie PC, van den Berg JW, Wilson JH (1999) Adenosine triphosphate: established and potential clinical applications. Drugs 58(2):211–232. https://doi.org/10.2165/00003495-199958020-00002

Article  CAS  PubMed  Google Scholar 

Hillman KA, Burnstock G, Unwin RJ (2005) The P2X7 ATP receptor in the kidney: a matter of life or death? Nephron Exp Nephrol 101(1):e24–e30. https://doi.org/10.1159/000086036

Article  CAS  PubMed  Google Scholar 

Hong S, Schwarz N, Brass A, Seman M, Haag F, Koch-Nolte F, Schilling WP, Dubyak GR (2009) Differential regulation of P2X7 receptor activation by extracellular nicotinamide adenine dinucleotide and ecto-ADP-ribosyltransferases in murine macrophages and T cells. J Immunol 183(1):578–592. https://doi.org/10.4049/jimmunol.0900120

Article  CAS  PubMed  Google Scholar 

Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F (2018) The P2X7 receptor: A main player in inflammation. Biochem Pharmacol 151:234–244. https://doi.org/10.1016/j.bcp.2017.12.021

Article  CAS  PubMed  Google Scholar 

Hillman KA, Burnstock G, Unwin RJ (2005) The P2X7 ATP receptor in the kidney: a matter of life or death? Nephron Exp Nephrol 101:e24–30. https://doi.org/10.1159/000086036

Article  CAS  PubMed  Google Scholar 

Vonend O, Turner CM, Chan CM, Loesch A, Dell’Anna GC, Srai KS, Burnstock G, Unwin RJ (2004) Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int 66:157–166. https://doi.org/10.1111/j.1523-1755.2004.00717.x

Article  CAS  PubMed  Google Scholar 

Burnstock G, Evans LC, Matthew A, Bailey MA (2014) Purinergic signalling in the kidney in health and Disease. Purinergic Signal 10:71–101. https://doi.org/10.1007/s11302-013-9400-5

Article  CAS  PubMed  Google Scholar 

Yan Y, Bai J, Zhou X, Tang J, Jiang C, Tolbert E, Bayliss G, Gong R, Zhao TC, Zhuang S (2015) P2X7 receptor inhibition protects against ischemic acute kidney injury in mice. Am J Physiol Cell Physiol 308(6):C463–C472. https://doi.org/10.1152/ajpcell.00245.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao J, Wang H, Dai C, Wang H, Zhang H, Huang Y, Wang S, Gaskin F, Yang N, Fu SM (2013) P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum 65(12):3176–3185. https://doi.org/10.1002/art.38174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Han Z, Tao J, Wang J, Liu X, Zhou W, Xu Z, Zhao C, Wang Z, Tan R, Gu M (2017) Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med 21(10):2359–2369. https://doi.org/10.1111/jcmm.13157

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isaka Y (2018) Targeting TGF-β signaling in kidney fibrosis. Int J Mol Sci 19(9):2532. https://doi.org/10.3390/ijms19092532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, Lan HY (2011) The protective role of Smad7 in diabetic Kidney Disease: mechanism and therapeutic potential. Diabetes 60(2):590–601. https://doi.org/10.2337/db10-0403

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akool el-S, Doller A, Müller R, Gutwein P, Xin C, Huwiler A, Pfeilschifter J, Eberhardt W (2005) Nitric oxide induces TIMP-1 expression by activating the transforming growth factor beta-smad signaling pathway. J Biol Chem 280(47):39403–39416. https://doi.org/10.1074/jbc.M504140200

Article  CAS  PubMed  Google Scholar 

Akool el-S, Doller A, Babelova A, Tsalastra W, Moreth K, Schaefer L, Pfeilschifter J, Eberhardt W (2008) Molecular mechanisms of TGF beta receptor-triggered signalling cascades rapidly induced by the calcineurin inhibitors cyclosporin A and FK506. J Immunol 181(4):2831–2845. https://doi.org/10.4049/jimmunol.181.4.2831

Article  CAS  PubMed  Google Scholar 

López-Hernández FJ, López-Novoa JM (2012) Role of TGF-β in chronic Kidney Disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347(1):141–154. https://doi.org/10.1007/s00441-011-1275-6

Article  CAS  PubMed  Google Scholar 

Shaikh G, Cronstein B (2016) Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 12(2):191–197. https://doi.org/10.1007/s11302-016-9498-3

Article  CAS  PubMed Central  Google Scholar 

Lu D, Insel PA (2013) Hydrolysis of extracellular ATP by ectonucleoside triphosphate diphosphohydrolase (ENTPD) establishes the set point for fibrotic activity of cardiac fibroblasts. J Biol Chem 288(26):19040–19049. https://doi.org/10.1074/jbc.M113.466102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gentile D, Natale M, Lazzerini PE, Capecchi PL, Laghi-Pasini F (2015) The role of P2X7 receptors in tissue fibrosis: a brief review. Purinergic Signal 11(4):435–440. https://doi.org/10.1007/s11302-015-9466-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang C, Yu W, Cui H, Wang Y, Zhang L, Han F, Huang T (2014) P2X7 blockade attenuates mouse liver fibrosis. Mol Med Rep 9(1):57–62. https://doi.org/10.3892/mmr.2013.1807

Article  CAS  PubMed  Google Scholar 

Burnstock G, Arnett TR, Orriss IR (2013) Purinergic signalling in the musculoskeletal system. Purinergic Signal 9(4):541–572. https://doi.org/10.1007/s11302-013-9381-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aldemir MN, Simsek M, Kara AV, Ozcicek F, Mammadov R, Yazıcı GN, Sunar M, Coskun R, Gulaboglu M, Suleyman H (2020) The effect of adenosine triphosphate on sunitinib-induced cardiac injury in rats. Hum Exp Toxicol 39(8):1046–1053. https://doi.org/10.1177/0960327120909874

Article  CAS  PubMed  Google Scholar 

Zaky HS, Abdel-Sattar SA, Allam A, Ahmed HI (2022) Further insights into the impact of rebamipide on gentamicin-induced nephrotoxicity in rats: modulation of SIRT1 and β-catenin/cyclin D1 pathways. Drug Chem Toxicol 1–13. https://doi.org/10.1080/01480545.2022.2104867

McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang XF, Shieh CC, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Gregg RJ, Kort ME, Nelson DW, Carroll WA, Marsh K, Faltynek CR, Jarvis MF (2007) P2X7-related modulation of pathological nociception in rats. Neuroscience 146(4):1817–1828. https://doi.org/10.1016/j.neuroscience.2007.03.035

Article  CAS  PubMed  Google Scholar 

Balah A, Ezzat O, Akool El -S (2018) Vitamin E inhibits cyclosporin A-induced CTGF and TIMP-1 expression by repressing ROS-mediated activation of TGF-β/Smad signaling pathway in rat liver. Int Immunopharmacol 65:493–502. https://doi.org/10.1016/j.intimp.2018.09.033

Article  CAS  PubMed  Google Scholar 

Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK (2020) Extracellular nucleotides and P2 receptors in renal function. Physiol Rev 100(1):211–269. https://doi.org/10.1152/physrev.00038.2018

Article  CAS  PubMed  Google Scholar 

Wang CM, Chang YY, Sun SH (2003) Activation of P2X7 purinoceptor-stimulated TGF-beta 1 mRNA expression involves PKC/MAPK signalling pathway in a rat brain-derived type-2 astrocyte cell line, RBA-2. Cell Signal 15(12):1129–1137. https://doi.org/10.1016/s0898-6568(03)00112-8

Article  PubMed  Google Scholar 

Stachon P, Heidenreich A, Merz J, Hilgendorf I, Wolf D, Willecke F, von Garlen S, Albrecht P, Härdtner C, Ehrat N, Hoppe N, Reinöhl J, von Zur Mühlen C, Bode C, Idzko M, Zirlik A (2017) P2X7 Deficiency Blocks Lesional Inflammasome Activity and Ameliorates Atherosclerosis in Mice. Circulation 135(25):2524–2533. https://doi.org/10.1161/CIRCULATIONAHA.117.027400

Article  CAS  PubMed  Google Scholar 

Hewinson J, Mackenzie AB (2007) P2X(7) receptor-mediated reactive oxygen and nitrogen species formation: from receptor to generators. Biochem Soc Trans 35:1168–1170. https://doi.org/10.1042/BST0351168

Article  CAS  PubMed  Google Scholar 

Lenertz LY, Gavala ML, Hill LM, Bertics PJ (2009) Cell signaling via the P2X(7) nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal 5(2):175–187. https://doi.org/10.1007/s11302-009-9133-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10(9):1077–1083. https://doi.org/10.1210/mend.10.9.8885242

Article  CAS  PubMed  Google Scholar 

Frangogiannis N (2020) Transforming growth factor-β in tissue fibrosis. J Exp Med 217(3):e20190103. https://doi.org/10.1084/jem.20190103

Article  PubMed  PubMed Central  Google Scholar 

Geng XQ, Ma A, He JZ, Wang L, Jia YL, Shao GY, Li M, Zhou H, Lin SQ, Ran JH, Yang BX (2020) Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin 41(5):670–677. https://doi.org/10.1038/s41401-019-0324-7

留言 (0)

沒有登入
gif