Novel synthesized ionizable lipid for LNP-mediated P2X7siRNA to inhibit migration and induce apoptosis of breast cancer cells

Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P et al (2020) Axial pharmaceutical properties of liposome in cancer therapy: recent advances and perspectives. Int J Pharm 581:119269

Article  CAS  PubMed  Google Scholar 

Kiaie SH, Majidi Zolbanin N, Ahmadi A, Bagherifar R, Valizadeh H, Kashanchi F et al (2022) Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J Nanobiotechnol 20(1):276

Article  CAS  Google Scholar 

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20(2):101–124

Article  CAS  PubMed  Google Scholar 

Han X, Zhang H, Butowska K, Swingle KL, Alameh M-G, Weissman D et al (2021) An ionizable lipid toolbox for RNA delivery. Nat Commun 12(1):1–6

Article  CAS  Google Scholar 

Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y (2021) Lipids and lipid derivatives for RNA delivery. Chem Rev 121(20):12181–12277

Article  CAS  PubMed Central  PubMed  Google Scholar 

Guevara ML, Persano F, Persano S (2020) Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem 8:589959

Article  CAS  PubMed Central  PubMed  Google Scholar 

Guo S, Li K, Hu B, Li C, Zhang M, Hussain A, et al., editors. Membrane‐destabilizing ionizable lipid empowered imaging‐guided siRNA delivery and cancer treatment. Exploration; 2021: Wiley Online Library.

Mao Y, Liu X (2020) Bioresponsive nanomedicine: the next step of deadliest cancers’ theranostics. Front Chem 8:257

Article  CAS  PubMed Central  PubMed  Google Scholar 

de Araújo JB, Kerkhoff VV, de Oliveira Maciel SFV, de Resende e Silva DT (2021) Targeting the purinergic pathway in breast cancer and its therapeutic applications. Purinergic Signal 17(2):179–200

Article  PubMed Central  PubMed  Google Scholar 

Duan S, Nordmeier S, Byrnes AE, Buxton IL (2021) Extracellular vesicle-mediated purinergic signaling contributes to host microenvironment plasticity and metastasis in triple negative breast cancer. Int J Mol Sci 22(2):597

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kiaie SH, Hatami Z, Nasr MS, Pazooki P, Hemmati S, Baradaran B, Valizadeh H (2023) Pharmacological interaction and immune response of purinergic receptors in therapeutic modulation. Purinergic Signal 16:1–23

Google Scholar 

Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A et al (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1):1–20

Google Scholar 

Zhang W-j (2021) Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 17(1):151–162

Article  CAS  PubMed Central  PubMed  Google Scholar 

Zhu X, Li Q, Song W, Peng X, Zhao R (2021) P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med 99(3):349–358

Article  CAS  PubMed  Google Scholar 

Zhang W-j, Hu C-g, Zhu Z-m, Luo H-l (2020) Effect of P2X7 receptor on tumorigenesis and its pharmacological properties. Biomed Pharmacother 125:109844

Article  CAS  PubMed  Google Scholar 

Adinolfi E, De Marchi E, Orioli E, Pegoraro A, Di Virgilio F (2019) Role of the P2X7 receptor in tumor-associated inflammation. Curr Opin Pharmacol 47:59–64

Article  CAS  PubMed  Google Scholar 

Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F (2018) The P2X7 receptor: a main player in inflammation. Biochem Pharmacol 151:234–244

Article  CAS  PubMed  Google Scholar 

Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW et al (2016) Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 10(1):166–178

Article  CAS  PubMed  Google Scholar 

Draganov D, Gopalakrishna-Pillai S, Chen Y-R, Zuckerman N, Moeller S, Wang C et al (2015) Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 5(1):1–17

Article  Google Scholar 

Tan C, Han L, Zou L, Luo C, Liu A, Sheng X et al (2015) Expression of P2X7R in breast cancer tissue and the induction of apoptosis by the gene-specific shRNA in MCF-7 cells. Exp Ther Med 10(4):1472–1478

Article  CAS  PubMed Central  PubMed  Google Scholar 

Yu X, Chen X, Tang X, Cao Y, Tang L, Liu Y. P2X7 blockade inhibits the growth of breast cancer in 4T1 breast cancer-bearing mice by NLRP3/caspase 1 pathway. Archives of Medical Science. 2020;16(1).

Xia J, Yu X, Tang L, Li G, He T (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34(1):103–110

Article  CAS  PubMed  Google Scholar 

Zheng L, Zhang X, Yang F, Zhu J, Zhou P, Yu F et al (2014) Regulation of the P2X7R by microRNA-216b in human breast cancer. Biochem Biophys Res Commun 452(1):197–204

Article  CAS  PubMed  Google Scholar 

Park M, Kim J, Phuong NT, Park JG, Park J-H, Kim Y-C et al (2019) Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production. Sci Rep 9(1):1–14

Google Scholar 

El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F et al (2023) Lipid nanoparticles for siRNA delivery in cancer treatment. Journal of controlled release: official journal of the Controlled Release Society 361:130–146

Article  PubMed  Google Scholar 

Cullis PR, Hope MJ (2017) Lipid nanoparticle systems for enabling gene therapies. Mol Ther 25(7):1467–1475

Article  CAS  PubMed Central  PubMed  Google Scholar 

Trollmann MF, Böckmann RA (2022) mRNA lipid nanoparticle phase transition. Biophys J 121(20):3927–3939

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R (2019) Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res 52(9):2435–2444

Article  CAS  PubMed  Google Scholar 

Eygeris Y, Gupta M, Kim J, Sahay G (2021) Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res 55(1):2–12

Article  PubMed  Google Scholar 

Eygeris Y, Patel S, Jozic A, Sahay G (2020) Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett 20(6):4543–4549

Article  ADS  CAS  PubMed  Google Scholar 

Guimaraes PP, Zhang R, Spektor R, Tan M, Chung A, Billingsley MM et al (2019) Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J Control Release 316:404–417

Article  CAS  PubMed Central  PubMed  Google Scholar 

Hou X, Zaks T, Langer R, Dong Y (2021) Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6(12):1078–1094

Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR (2019) On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11(45):21733–21739

Article  CAS  PubMed  Google Scholar 

Maeki M, Okada Y, Uno S, Niwa A, Ishida A, Tani H et al (2022) Production of siRNA-loaded lipid nanoparticles using a microfluidic device. J Vis Exp 181:e62999

Google Scholar 

Khare P, Dave KM, Kamte YS, Manoharan MA, O’Donnell LA, Manickam DS (2022) Development of lipidoid nanoparticles for siRNA delivery to neural cells. AAPS J 24(1):1–17

Article  Google Scholar 

Basha G, Ordobadi M, Scott WR, Cottle A, Liu Y, Wang H et al (2016) Lipid nanoparticle delivery of siRNA to osteocytes leads to effective silencing of SOST and inhibition of sclerostin in vivo. Mol Ther Nucleic Acids 5:e363

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ball RL, Bajaj P, Whitehead KA (2017) Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomed 12:305

Article  CAS  Google Scholar 

Alimohammadi R, Porgoo M, Eftekhary M, Kiaie SH, Ansari Dezfouli E, Dehghani M et al (2022) SARS-CoV-2 mRNA-vaccine candidate; COReNAPCIN(®), induces robust humoral and cellular immunity in mice and non-human primates. NPJ vaccines 7(1):105

Article  CAS  PubMed Central  PubMed  Google Scholar 

Mousli Y, Brachet M, Chain JL, Ferey L (2022) A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations. J Pharm Biomed Anal 220:115011

Article  CAS  PubMed Central  PubMed 

留言 (0)

沒有登入
gif