Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P et al (2020) Axial pharmaceutical properties of liposome in cancer therapy: recent advances and perspectives. Int J Pharm 581:119269
Article CAS PubMed Google Scholar
Kiaie SH, Majidi Zolbanin N, Ahmadi A, Bagherifar R, Valizadeh H, Kashanchi F et al (2022) Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J Nanobiotechnol 20(1):276
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20(2):101–124
Article CAS PubMed Google Scholar
Han X, Zhang H, Butowska K, Swingle KL, Alameh M-G, Weissman D et al (2021) An ionizable lipid toolbox for RNA delivery. Nat Commun 12(1):1–6
Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y (2021) Lipids and lipid derivatives for RNA delivery. Chem Rev 121(20):12181–12277
Article CAS PubMed Central PubMed Google Scholar
Guevara ML, Persano F, Persano S (2020) Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem 8:589959
Article CAS PubMed Central PubMed Google Scholar
Guo S, Li K, Hu B, Li C, Zhang M, Hussain A, et al., editors. Membrane‐destabilizing ionizable lipid empowered imaging‐guided siRNA delivery and cancer treatment. Exploration; 2021: Wiley Online Library.
Mao Y, Liu X (2020) Bioresponsive nanomedicine: the next step of deadliest cancers’ theranostics. Front Chem 8:257
Article CAS PubMed Central PubMed Google Scholar
de Araújo JB, Kerkhoff VV, de Oliveira Maciel SFV, de Resende e Silva DT (2021) Targeting the purinergic pathway in breast cancer and its therapeutic applications. Purinergic Signal 17(2):179–200
Article PubMed Central PubMed Google Scholar
Duan S, Nordmeier S, Byrnes AE, Buxton IL (2021) Extracellular vesicle-mediated purinergic signaling contributes to host microenvironment plasticity and metastasis in triple negative breast cancer. Int J Mol Sci 22(2):597
Article CAS PubMed Central PubMed Google Scholar
Kiaie SH, Hatami Z, Nasr MS, Pazooki P, Hemmati S, Baradaran B, Valizadeh H (2023) Pharmacological interaction and immune response of purinergic receptors in therapeutic modulation. Purinergic Signal 16:1–23
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A et al (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1):1–20
Zhang W-j (2021) Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 17(1):151–162
Article CAS PubMed Central PubMed Google Scholar
Zhu X, Li Q, Song W, Peng X, Zhao R (2021) P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med 99(3):349–358
Article CAS PubMed Google Scholar
Zhang W-j, Hu C-g, Zhu Z-m, Luo H-l (2020) Effect of P2X7 receptor on tumorigenesis and its pharmacological properties. Biomed Pharmacother 125:109844
Article CAS PubMed Google Scholar
Adinolfi E, De Marchi E, Orioli E, Pegoraro A, Di Virgilio F (2019) Role of the P2X7 receptor in tumor-associated inflammation. Curr Opin Pharmacol 47:59–64
Article CAS PubMed Google Scholar
Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F (2018) The P2X7 receptor: a main player in inflammation. Biochem Pharmacol 151:234–244
Article CAS PubMed Google Scholar
Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW et al (2016) Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 10(1):166–178
Article CAS PubMed Google Scholar
Draganov D, Gopalakrishna-Pillai S, Chen Y-R, Zuckerman N, Moeller S, Wang C et al (2015) Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 5(1):1–17
Tan C, Han L, Zou L, Luo C, Liu A, Sheng X et al (2015) Expression of P2X7R in breast cancer tissue and the induction of apoptosis by the gene-specific shRNA in MCF-7 cells. Exp Ther Med 10(4):1472–1478
Article CAS PubMed Central PubMed Google Scholar
Yu X, Chen X, Tang X, Cao Y, Tang L, Liu Y. P2X7 blockade inhibits the growth of breast cancer in 4T1 breast cancer-bearing mice by NLRP3/caspase 1 pathway. Archives of Medical Science. 2020;16(1).
Xia J, Yu X, Tang L, Li G, He T (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34(1):103–110
Article CAS PubMed Google Scholar
Zheng L, Zhang X, Yang F, Zhu J, Zhou P, Yu F et al (2014) Regulation of the P2X7R by microRNA-216b in human breast cancer. Biochem Biophys Res Commun 452(1):197–204
Article CAS PubMed Google Scholar
Park M, Kim J, Phuong NT, Park JG, Park J-H, Kim Y-C et al (2019) Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production. Sci Rep 9(1):1–14
El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F et al (2023) Lipid nanoparticles for siRNA delivery in cancer treatment. Journal of controlled release: official journal of the Controlled Release Society 361:130–146
Cullis PR, Hope MJ (2017) Lipid nanoparticle systems for enabling gene therapies. Mol Ther 25(7):1467–1475
Article CAS PubMed Central PubMed Google Scholar
Trollmann MF, Böckmann RA (2022) mRNA lipid nanoparticle phase transition. Biophys J 121(20):3927–3939
Article CAS PubMed Central PubMed Google Scholar
Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R (2019) Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res 52(9):2435–2444
Article CAS PubMed Google Scholar
Eygeris Y, Gupta M, Kim J, Sahay G (2021) Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res 55(1):2–12
Eygeris Y, Patel S, Jozic A, Sahay G (2020) Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett 20(6):4543–4549
Article ADS CAS PubMed Google Scholar
Guimaraes PP, Zhang R, Spektor R, Tan M, Chung A, Billingsley MM et al (2019) Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J Control Release 316:404–417
Article CAS PubMed Central PubMed Google Scholar
Hou X, Zaks T, Langer R, Dong Y (2021) Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6(12):1078–1094
Article ADS CAS PubMed Central PubMed Google Scholar
Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR (2019) On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11(45):21733–21739
Article CAS PubMed Google Scholar
Maeki M, Okada Y, Uno S, Niwa A, Ishida A, Tani H et al (2022) Production of siRNA-loaded lipid nanoparticles using a microfluidic device. J Vis Exp 181:e62999
Khare P, Dave KM, Kamte YS, Manoharan MA, O’Donnell LA, Manickam DS (2022) Development of lipidoid nanoparticles for siRNA delivery to neural cells. AAPS J 24(1):1–17
Basha G, Ordobadi M, Scott WR, Cottle A, Liu Y, Wang H et al (2016) Lipid nanoparticle delivery of siRNA to osteocytes leads to effective silencing of SOST and inhibition of sclerostin in vivo. Mol Ther Nucleic Acids 5:e363
Article CAS PubMed Central PubMed Google Scholar
Ball RL, Bajaj P, Whitehead KA (2017) Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomed 12:305
Alimohammadi R, Porgoo M, Eftekhary M, Kiaie SH, Ansari Dezfouli E, Dehghani M et al (2022) SARS-CoV-2 mRNA-vaccine candidate; COReNAPCIN(®), induces robust humoral and cellular immunity in mice and non-human primates. NPJ vaccines 7(1):105
Article CAS PubMed Central PubMed Google Scholar
Mousli Y, Brachet M, Chain JL, Ferey L (2022) A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations. J Pharm Biomed Anal 220:115011
Comments (0)