IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA (2022) International Union of Basic and Clinical Pharmacology. CXII: Adenosine receptors: a further update. Pharmacol Rev 74(2):340–372. https://doi.org/10.1124/pharmrev.121.000445
Article CAS PubMed PubMed Central Google Scholar
Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov 12(4):265–286. https://doi.org/10.1038/nrd3955
Article CAS PubMed PubMed Central Google Scholar
Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264. https://doi.org/10.1038/nrd1983
Article CAS PubMed PubMed Central Google Scholar
Linden J (2005) Adenosine in tissue protection and tissue regeneration. Mol Pharmacol 67(5):1385–1387. https://doi.org/10.1124/mol.105.011783
Article CAS PubMed Google Scholar
Jacobson KA, Tosh DK, Jain S, Gao ZG (2019) Historical and current adenosine receptor agonists in preclinical and clinical development. Front Cell Neurosci 13:124. https://doi.org/10.3389/fncel.2019.00124
Article CAS PubMed PubMed Central Google Scholar
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Aghazadeh Tabrizi M, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S (2018) A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev 38(4):1031–1072. https://doi.org/10.1002/med.21456
Article CAS PubMed Google Scholar
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67(1):74–102
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140. https://doi.org/10.1016/j.pharmthera.2007.09.002
Article CAS PubMed Google Scholar
Wagner R, Ngamsri KC, Stark S, Vollmer I, Reutershan J (2010) Adenosine receptor A3 is a critical mediator in LPS-induced pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 299(4):L502–512. https://doi.org/10.1152/ajplung.00083.2010
Article CAS PubMed Google Scholar
Ren TH, Lv MM, An XM, Leung WK, Seto WK (2020) Activation of adenosine A3 receptor inhibits inflammatory cytokine production in colonic mucosa of patients with ulcerative colitis by downregulating the nuclear factor-kappa B signaling. J Dig Dis 21(1):38–45. https://doi.org/10.1111/1751-2980.12831
Article CAS PubMed Google Scholar
Haskó G, Szabó C, Németh ZH, Kvetan V, Pastores SM, Vizi ES (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157(10):4634–4640
Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS (1996) Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J Immunol 156(9):3435–34342
Article CAS PubMed Google Scholar
Cohen S, Barer F, Bar-Yehuda S, IJzerman AP, Jacobson KA, Fishman P (2014) A3 adenosine receptor allosteric modulator induces an anti-inflammatory effect: in vivo studies and molecular mechanism of action. Mediators Inflamm 2014:708746. https://doi.org/10.1155/2014/708746
Article CAS PubMed PubMed Central Google Scholar
Gao ZG, Auchampach JA, Jacobson KA (2023) Species dependence of A3 adenosine receptor pharmacology and function. Purinergic Signal 19(3):523–550. https://doi.org/10.1007/s11302-022-09910-1
Article CAS PubMed Google Scholar
Lillo A, Serrano-Marín J, Lillo J, Raïch I, Navarro G, Franco R (2023) Gene regulation in activated microglia by adenosine A3 receptor agonists: a transcriptomics study. Purinergic Signal. Jan 27. https://doi.org/10.1007/s11302-022-09916-9
Németh ZH, Leibovich SJ, Deitch EA, Vizi ES, Szabó C, Hasko G (2003) cDNA microarray analysis reveals a nuclear factor-kappab-independent regulation of macrophage function by adenosine. J Pharmacol Exp Ther 306(3):1042–1049. https://doi.org/10.1124/jpet.103.052944
Article CAS PubMed Google Scholar
Lillo A, Serrano-Marín J, Lillo J, Raïch I, Navarro G, Franco R (2023) Differential gene expression in activated microglia treated with adenosine A2A receptor antagonists highlights olfactory receptor 56 and T-cell activation GTPase-activating protein 1 as potential biomarkers of the polarization of activated microglia. Cells 12:2213. https://doi.org/10.3390/cells12182213
Article CAS PubMed PubMed Central Google Scholar
Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. https://doi.org/10.1038/nri3399
Article CAS PubMed Google Scholar
Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5:626–634. https://doi.org/10.1038/nrm1435
Hauert AB, Martinelli S, Marone C, Niggli V, Differentiated (2002) HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int J Biochem Cell Biol 34:838–854. https://doi.org/10.1016/s1357-2725(02)00010-9
Article CAS PubMed Google Scholar
Woo CH, Yoo MH, You HJ, Cho SH, Mun YC, Seong CM, Kim JH (2003) Transepithelial migration of neutrophils in response to leukotriene B4 is mediated by a reactive oxygen species-extracellular signal-regulated kinase-linked cascade. J Immunol 170:6273–6279. https://doi.org/10.4049/jimmunol.170.12.6273
Article CAS PubMed Google Scholar
Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795. https://doi.org/10.1126/science.1132559
Article ADS CAS PubMed Google Scholar
Carrigan SO, Pink DB, Stadnyk AW (2007) Neutrophil transepithelial migration in response to the chemoattractant fMLP but not C5a is phospholipase D-dependent and related to the use of CD11b/CD18. J Leukoc Biol 82:1575–1584. https://doi.org/10.1189/jlb.0806528
Article CAS PubMed Google Scholar
Kohno Y, Sei Y, Koshiba M, Kim HO, Jacobson KA (1996) Induction of apoptosis in HL-60 human promyelocytic leukemia cells by selective adenosine A3 receptor agonists. Biochem Biophys Res Comm. ;219:904–910. Correction: 1996;221:849
Gessi S, Varani K, Merighi S, Cattabriga E, Iannotta V, Leung E, Baraldi PG, Borea PA (2002) A3 adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61(2):415–424. https://doi.org/10.1124/mol.61.2.415
Article CAS PubMed Google Scholar
Koscsó B, Csóka B, Pacher P, Haskó G (2011) Investigational A3 adenosine receptor targeting agents. Expert Opin Investig Drugs 20(6):757–768. https://doi.org/10.1517/13543784.2011.573785
Article CAS PubMed PubMed Central Google Scholar
Tosh DK, Padia J, Salvemini D, Jacobson KA (2015) Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain. Purinergic Signal 11:371–387
Article CAS PubMed PubMed Central Google Scholar
Göblyös A, Gao ZG, Brussee J, Connestari R, Neves Santiago S, Ye K, IJzerman AP, Jacobson KA (2006) Structure activity relationships of 1H-imidazo[4,5-c]quinolin-4-amine derivatives new as allosteric enhancers of the A3 adenosine receptor. J Med Chem 49:3354–3361
Article PubMed PubMed Central Google Scholar
Gao ZG, Levitan IM, Inoue A, Wei Q, Jacobson KA (2023) A2B adenosine receptor activation and modulation by protein kinase C. iScience 26(7):107178. https://doi.org/10.1016/j.isci.2023.107178
Article ADS CAS PubMed PubMed Central Google Scholar
Gao ZG, Verzijl D, Zweemer A, Ye K, Göblyös A, Ijzerman AP, Jacobson KA (2011) Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochem Pharmacol 82(6):658–668. https://doi.org/10.1016/j.bcp.2011.06.017
Article CAS PubMed PubMed Central Google Scholar
Totzke G, Essmann F, Pohlmann S, Lindenblatt C, Jänicke RU, Schulze-Osthoff K (2006) A novel member of the IkappaB family, human IkappaB-zeta, inhibits transactivation of p65 and its DNA binding. J Biol Chem 281(18):12645–12654. https://doi.org/10.1074/jbc.M511956200
Article CAS PubMed Google Scholar
Cartwright T, Perkins ND, Wilson L (2016) NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 283(10):1812–1822. https://doi.org/10.1111/febs.13627
Article CAS PubMed Google Scholar
Giordano M, Roncagalli R, Bourdely P, Chasson L, Buferne M, Yamasaki S, Beyaert R, van Loo G, Auphan-Anezin N, Schmitt-Verhulst AM, Verdeil G (2014) The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc Natl Acad Sci USA 111(30):11115–11120. https://doi.org/10.1073/pnas.1406259111
Comments (0)