P2X7 receptors and pannexin1 hemichannels shape presynaptic transmission

Burnstock G (1976) Purinergic receptors. J Theor Biol 62:491–503. https://doi.org/10.1016/0022-5193(76)90133-8

Article  CAS  PubMed  Google Scholar 

Burnstock G, Satchell DG, Smythe A (1972) A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol 46:234–242. https://doi.org/10.1111/j.1476-5381.1972.tb06868.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797. https://doi.org/10.1152/physrev.00043.2006

Article  CAS  PubMed  Google Scholar 

Mori M, Heuss C, Gähwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123

Article  CAS  PubMed  PubMed Central  Google Scholar 

North R, a, (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067. https://doi.org/10.1152/physrev.00015.2002

Article  CAS  PubMed  Google Scholar 

North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Eur J Physiol 452:479–485. https://doi.org/10.1007/s00424-006-0060-y

Article  CAS  Google Scholar 

Cunha RA, Vizi ES, Ribeiro JA, Sebastião AM (1996) Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal Slices. J Neurochem 67:2180–2187. https://doi.org/10.1046/j.1471-4159.1996.67052180.x

Article  CAS  PubMed  Google Scholar 

Wieraszko A, Goldsmith G, Seyfried TN (1989) Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res 485:244–250. https://doi.org/10.1016/0006-8993(89)90567-2

Article  CAS  PubMed  Google Scholar 

Kang J, Kang N, Lovatt D et al (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711. https://doi.org/10.1523/jneurosci.5048-07.2008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahl G (2015) ATP release through pannexon channels. Phil Trans R Soc B 370. https://doi.org/10.1098/rstb.2014.0191

Burnstock G, Cocks T, Crowe R (1978) Evidence for purinergic innervation of the anococcygeus muscle. Br J Pharmacol 64:13–20. https://doi.org/10.1111/j.1476-5381.1978.tb08635.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

North RA, Barnard EA (1997) Nucleotide receptors. Curr Opin Neurobiol 7:346–357. https://doi.org/10.1016/s0959-4388(97)80062-1

Article  CAS  PubMed  Google Scholar 

Jarvis MF, Khakh BS (2009) Neuropharmacology ATP-gated P2X cation-channels. Neuropharmacology 56:208–215. https://doi.org/10.1016/j.neuropharm.2008.06.067

Article  CAS  PubMed  Google Scholar 

Martínez-cuesta MÁ, Blanch-ruiz MA, Ortega-luna R et al (2020) Structural and functional basis for understanding the biological significance of P2X7 receptor. Int J Mol Sci 21:1–23. https://doi.org/10.3390/ijms21228454

Article  CAS  Google Scholar 

Sperlágh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346. https://doi.org/10.1016/j.pneurobio.2006.03.007

Article  CAS  PubMed  Google Scholar 

Sluyter R (2017) The P2X7 Receptor. Adv Exp Med Biol 1051:17–53. https://doi.org/10.1007/5584_2017_59

Article  CAS  PubMed  Google Scholar 

Surprenant A, Kawashima E, Rassendren F et al (1996) The cytolytic P2z receptor for extracellular ATP identified as a P2x receptor (P2X7). Science 272(80):735–738. https://doi.org/10.1126/science.272.5262.735

Article  CAS  PubMed  Google Scholar 

Sperlágh B, Illes P (2014) P2X7 receptor : an emerging target in central nervous system diseases. Trends Pharmacol Sci 35:537–547. https://doi.org/10.1016/j.tips.2014.08.002

Article  CAS  PubMed  Google Scholar 

Tewari M, Seth P (2015) Emerging role of P2X7 receptors in CNS health and disease. Ageing Res Rev 24:328–342. https://doi.org/10.1016/j.arr.2015.10.001

Article  CAS  PubMed  Google Scholar 

Khakh BS, Lester HA (1999) Dynamic selectivity filters in ion channels. Neuron 23:653–658. https://doi.org/10.1016/S0896-6273(01)80025-8

Article  CAS  PubMed  Google Scholar 

Virginio C, Mackenzie A, Rassendren FA et al (1999) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2:315–321. https://doi.org/10.1038/7225

Article  CAS  PubMed  Google Scholar 

Virginio C, Mackenzie A, North RA et al (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2XÝ receptor. J Physiol 519:335–346. https://doi.org/10.1111/j.1469-7793.1999.0335m.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hibell AD, Kidd EJ, Chessell IP et al (2000) Apparent species differences in the kinetic properties of P2X 7 receptors. Br J Pharmacol 130:167–173. https://doi.org/10.1038/sj.bjp.0703302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1 release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082. https://doi.org/10.1038/sj.emboj.7601378

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Virgilio F, Schmalzing G, Markwardt F (2018) The elusive P2X7 macropore. Trends Cell Biol 28:392–404. https://doi.org/10.1016/j.tcb.2018.01.005

Article  CAS  PubMed  Google Scholar 

Ugur M, Ugur Ö (2019) A mechanism-based approach to P2X7 receptor action. Mol Pharmacol 95:442–450. https://doi.org/10.1124/mol.118.115022

Article  CAS  PubMed  Google Scholar 

Di Virgilio F, Giuliani AL, Vultaggio-Poma V et al (2018) Non-nucleotide agonists triggering P2X7 receptor activation and pore formation. Front Pharmacol 9:1–10. https://doi.org/10.3389/fphar.2018.00039

Article  CAS  Google Scholar 

Di Virgilio F, Dal Ben D, Sarti AC et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020

Article  CAS  PubMed  Google Scholar 

Ferrari D, Pizzirani C, Adinolfi E et al (2004) The antibiotic polymyxin B modulates P2X7 receptor function. J Immunol 173:4652–4660. https://doi.org/10.4049/jimmunol.173.7.4652

Article  CAS  PubMed  Google Scholar 

Karasawa A, Michalski K, Mikhelzon P, Kawate T (2017) The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. Elife 6:1–22. https://doi.org/10.7554/eLife.31186

Article  Google Scholar 

Duan S, Neary J (2006) P2X7 receptors: properties and relevance to CNS function. Glia 54:738–746. https://doi.org/10.1002/glia

Article  PubMed  Google Scholar 

Kim M, Jiang L, Wilson HL et al (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J 20:6347–6358. https://doi.org/10.1093/emboj/20.22.6347

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denlinger LC, Fisette PL, Sommer JA et al (2001) Cutting Edge: The nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide. J Immunol 164:1871–1876. https://doi.org/10.4049/jimmunol.167.4.1871

Article  Google Scholar 

Armstrong JN, Brust TB, Lewis RG, MacVicar B a (2002) Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 22:5938–5945 20026618

Panchin Y, Kelmanson I, Matz M et al (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:473–474. https://doi.org/10.1016/s0960-9822(00)00576-5

Article  Google Scholar 

Bruzzone R, Hormuzdi SG, Barbe MT et al (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci 100:13644–13649. https://doi.org/10.1073/pnas.2233464100

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif