Force Characteristics of Yersinia pestis Lipopolysaccharide Interaction with TLR4 and CD14 Receptors on J774 Macrophages: Atomic Force Microscopy

Knirel Y.A., Anisimov A.P. 2012. Lipopolysaccharide of Yersinia pestis, the cause of plague: Structure, genetics, biological properties. Acta Naturae. 4 (3), 46–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leo J.C., Skurnik M. 2011. Adhesins of human pathogens from the genus Yersinia. Adv. Exp. Med. Biol. 715, 1–15.

Article  CAS  PubMed  Google Scholar 

Konyshev I.V., Ivanov S.A., Kopylov P.Kh., Anisimov A.P., Dentovskaya S.V., Byvalov A.A. 2022. The role of Yersinia pestis antigens in adhesion to J774 macrophages: an optical trapping study. Appl. Biochem. M-icrobiol. 58, 394–400.

Article  CAS  Google Scholar 

Park B.S., Lee J.O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45 (12), e66.

Article  PubMed  PubMed Central  Google Scholar 

Kim S.J., Kim H.M. 2017. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 50 (2), 55–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuura M., Takahashi H., Watanabe H., Saito S., Kawahara K. 2010. Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophages. Clin. Vaccine Immunol. 17 (1), 49–55.

Article  CAS  PubMed  Google Scholar 

Yang K., He Y., Park C.G., Kang Y.S., Zhang P., Han Y., Cui Y., Bulgheresi S., Anisimov A.P., Dentovskaya S.V., Ying X., Jiang L., Ding H., Njiri O.A., Zhang S., Zheng G., Xia L., Kan B., Wang X., Jing H., Yan M., Li W., Wang Y., Xiamu X., Chen G., Ma D., Bartra S.S., Plano G.V., Klena J.D., Yang R., Skurnik M., Chen T. 2019. Yersinia pestis interacts with SIGNR1 (CD209b) for promoting host dissemination and infection. Front. Immunol. 10, 96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westphal O., Jann K. 1965. Bacterial lipopolysaccharides. Extraction with phenolwater and further applications of the procedure. Methodes Carbohydr. Chem. 5, 83–91.

CAS  Google Scholar 

Ebner A., Wildling L., Gruber H.J. 2019. Functionalization of AFM tips and supports for molecular recognition force spectroscopy and recognition imaging. Methods Mol. Biol. 1886, 117–151.

Article  CAS  PubMed  Google Scholar 

Pi J., Cai J. 2019. Cell topography and its quantitative imaging by AFM. In: Atomic force microscopy: Methods and protocols. Eds. Santos N.C., Carvalho F.A. New York: Humana New York, p. 99–113.

Hutter J.L., Chen J., Wan W.K., Uniyal S., Leabu M., Chan B.M.C. 2005. Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation. J. Microscopy. 219 (2), 61–68.

Article  CAS  Google Scholar 

Vaure C., Liu Y. 2014. A comparative review of Toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 5, 316.

Article  PubMed  PubMed Central  Google Scholar 

Mahnke K., Becher E., Ricciardi-Castagnoli P., Luger T.A., Schwarz T., Grabbe S. 1997. CD14 is expressed by subsets of murine dendritic cells and upregulated by lipopolysaccharide. Adv. Exp. Med. Biol. 417, 145–159.

Sabroe I., Jones E.C., Usher L.R., Whyte M.K.B., Dower S.K. 2002. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: A critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701–4710.

Article  CAS  PubMed  Google Scholar 

Choi S.-H., Harkewicz R., Lee J.H., Boullier A., Almazan F., Li A.C., Witztum J.L., Bae Y.S., Miller Y.I. 2009. Lipoprotein accumulation in macrophages via TLR4-dependent fluid phase uptake. Circ. Res. 104 (12), 1355–1363.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei M.-T., Hua K.-F., Hsu J., Karmenyan A., Tseng K.-Y., Wong C.-H., Hsu H.-Y., Chiou A. 2007. The interaction of lipopolysaccharide with membrane receptors on macrophages pretreated with extract of Reishi polysaccharides measured by optical tweezers. Optics Express. 15, 11020–11032.

Article  CAS  PubMed  Google Scholar 

Byvalov A.A., Belozerov V.S., Ananchenko B.A., Konyshev I.V. 2022. Specific and nonspecific interactions of Yersinia pseudotuberculosis lipopolysaccharide with monoclonal antibodies assessed by atomic force microscopy. Biophysics. 67, 856–866.

Article  CAS  Google Scholar 

Arnal L., Longo G., Stupar P., Castez M.F., Cattelan N., Salvarezza R.C., Yantorno O.M., Kasas S., Vela M.E. 2015. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy. Nanoscale. 7 (41), 17563–17572.

Article  CAS  PubMed  Google Scholar 

Richter W., Vogel V., Howe J., Steiniger F., Brauser F., Koch M.H.J., Roessle M., Gutsmann T., Garidel P., Mäntele W., Brandenburg K. 2010. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immunity. 17 (5), 1–12.

Google Scholar 

Bergstrand A., Svanberg C., Langton M., Nyden M. 2006. Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids Surf. B Biointerfaces. 53 (1), 9–14.

Article  CAS  PubMed  Google Scholar 

Santos N.C., Silva A.C., Castanho M.A., Martins-Silva J., Saldanha C. 2003. Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. Chembiochem. 4 (1), 96–100.

Article  CAS  PubMed  Google Scholar 

Yang K., Park C.G., Cheong C., Bulgheresi S., Zhang S., Zhang P., He Y., Jiang L., Huang H., Ding H., Wu Y., Wang S., Zhang L., Li A., Xia L., Bartra S.S., Plano G.V., Skurnik M., Klena J.D., Chen T. 2015. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunol. Cell Biol. 93 (9), 815–824.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif