Immunofluorescent Identification of GABAergic Structures in the Somatic Muscle of the Earthworm Lumbricus terrestris

Volkov M.E. 2012. Vital staining of nerve structures with fluorescent dyes and optical determination of acetylcholine in the somatic muscle of the earthworm Lumbricus terrestris. Bull. Experim. Biol. Med. 154 (1), 100–103. https://doi.org/10.1007/s10517-012-1885-3

Article  CAS  Google Scholar 

Volkov E.M., Sabirova A.R., Nurullin L.F., Grishin S.K., Zefirov A.L. 2006. Effect of GABAergic and adrenergic agents on activity of Na+/K+ pump and Cl– cotransport in somatic muscle cells of earthworm Lumbricus terrestris. Bull. Experim. Biol. Med. 141 (5), 633–635. https://doi.org/10.1007/s10517-006-0239-4

Article  CAS  Google Scholar 

Volkov E.M., Nurullin L.F., Volkov M.E., Nikolsky E.E., Vyskočil F. 2011. Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158 (4), 520–524. https://doi.org/10.1016/j.cbpa.2010.12.016

Article  CAS  PubMed  Google Scholar 

Malomouzh A.I., Petrov K.A., Nurullin L.F., Nikolsky E.E. 2015. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction. J. Neurochem. 135 (6), 1149–1160. https://doi.org/10.1111/jnc.13373

Article  CAS  PubMed  Google Scholar 

Parry L., Tanner A., Vinther J. 2014. The origin of annelids. Front. Palaeontology. 57 (6), 1091–1103. https://doi.org/10.1111/pala.12129

Article  Google Scholar 

Purschke G., Müller M.C.M. 2006. Evolution of body wall musculature. Integr. Comp. Biol. 46 (4), 497–507. https://doi.org/10.1093/icb/icj053

Article  CAS  PubMed  Google Scholar 

Valtorta F., Pennuto M., Bonanomi D., Benfenati F. 2004. Synaptophysin: Leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays. 26 (4), 445–453. https://doi.org/10.1002/bies.20012

Article  CAS  PubMed  Google Scholar 

Kwon S.E., Chapman E.R. 2011. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron. 70 (5), 847–854. https://doi.org/10.1016/j.neuron.2011.04.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krause M., Wernig A. 1985. The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog. J. Neurocytol. 14 (5), 765–780. https://doi.org/10.1007/BF01170827

Article  CAS  PubMed  Google Scholar 

Łątka K., Jończyk J., Bajda M. 2020. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int. J. Biol. Macromol. 158, 750–772. https://doi.org/10.1016/j.ijbiomac.2020.04.126

Article  CAS  Google Scholar 

Sallard E., Letourneur D., Legendre P. 2021. Electrophysiology of ionotropic GABA receptors. Cell. Mol. Life Sci. 78 (13), 5341–5370. https://doi.org/10.1007/s00018-021-03846-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaye H., Stauch B., Gati C., Cherezov V. 2021. Molecular mechanisms of metabotropic GABAB receptor function. Sci Adv. 7 (22), eabg3362. https://doi.org/10.1126/sciadv.abg3362

Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. 1999. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 22 (5), 208–215. https://doi.org/10.1016/S0166-2236(98)01349-6

Article  CAS  PubMed  Google Scholar 

Melone M., Ciappelloni S., Conti F. 2014. Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex. Front. Neuroanat. 8 (72). https://doi.org/10.3389/fnana.2014.00072

Angulo M.C., Le Meur K., Kozlov A.S., Charpak S., Audinat E. 2008. GABA, a forgotten gliotransmitter. Prog. Neurobiol. 86 (3), 297–303. https://doi.org/10.1016/j.pneurobio.2008.08.002

Article  CAS  PubMed  Google Scholar 

Yoon B.E., Lee C.J. 2014. GABA as a rising gliotransmitter. Front. Neural Circuits. 8, 141. https://doi.org/10.3389/fncir.2014.00141

Article  PubMed  PubMed Central  Google Scholar 

Takács V.T., Cserép C., Schlingloff D., Pósfai B., Szőnyi A., Sos K.E., Környei Z., Dénes Á., Gulyás A.I., Freund T.F., Nyiri G. 2018. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat. Commun. 9 (1), 2848. https://doi.org/10.1038/s41467-018-05136-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saunders A., Granger A.J., Sabatini B.L. 2015. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. Elife. 27 (4), e06412. https://doi.org/10.7554/eLife.06412

Article  Google Scholar 

Padgett C.L., Slesinger P.A. 2010. GABAB receptor coupling to G-proteins and ion channels. Adv. Pharmacol. 58, 123–147. https://doi.org/10.1016/S1054-3589(10)58006-2

Article  CAS  PubMed  Google Scholar 

Shen W., Slaughter M.M. 1999. Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. J. Physiol. 516 (Pt. 3), 711–718. https://doi.org/10.1111/j.1469-7793.1999.0711u.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carter T.J., Mynlieff M. 2004. Gamma-aminobutyric acid type B receptors facilitate L-type and attenuate N‑type Ca2+ currents in isolated hippocampal neurons. J. Neurosci. Res. 76 (3), 323–333. https://doi.org/10.1002/jnr.20085

Article  CAS  PubMed  Google Scholar 

Chalifoux J.R., Carter A.G. 2011. GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J. Neurosci. 31 (11), 4221–4232. https://doi.org/10.1523/JNEUROSCI.4561-10.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seagar M., Lévêque C., Charvin N., Marquèze B., Martin-Moutot N., Boudier J.A., Boudier J.L., Shoji-Kasai Y., Sato K., Takahashi M. 1999. Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1381), 289–297. https://doi.org/10.1098%2Frstb.1999.0380

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gandini M.A., Zamponi G.W. 2022. Voltage-gated calcium channel nanodomains: Molecular composition and function. FEBS J. 289 (3), 614–633. https://doi.org/10.1111/febs.15759

Article  CAS  PubMed  Google Scholar 

Catterall W.A. 2011. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3 (8), a003947. https://doi.org/10.1101%2Fcshperspect.a003947

Article  PubMed  PubMed Central  Google Scholar 

Xue L., Zhang Z., McNeil B.D., Luo F., Wu X.S., Sheng J., Shin W., Wu L.G. 2012. Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep. 1 (6), 632–638. https://doi.org/10.1016/j.celrep.2012.04.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Volkov M.E., Volkov E.M., Nurullin L.F. 2013. Immunocytochemical identification of synaptotagmin 1, syntaxin 1, Ca2+ channel of the N-type, and nicotinic cholinoreceptor in motor neuromuscular junctions of somatic muscle of the earthworm Lumbricus terrestris. Cell Tissue Biol. 7, 64–71. https://doi.org/10.1134/S1990519X13010148

Article  Google Scholar 

Nurullin L.F., Volkov E.M. 2020. Immunofluorescent identification of α1 isoform subunits of voltage-gated Ca2+-channels of Cav1, Cav2, and Cav3 families in areas of cholinergic synapses of somatic muscles in earthworm Lumbricus terrestris. Cell Tissue Biol. 14 (4), 316–323. https://doi.org/10.1134/S1990519X20040070

Article  Google Scholar 

Comments (0)

No login
gif