Volkov M.E. 2012. Vital staining of nerve structures with fluorescent dyes and optical determination of acetylcholine in the somatic muscle of the earthworm Lumbricus terrestris. Bull. Experim. Biol. Med. 154 (1), 100–103. https://doi.org/10.1007/s10517-012-1885-3
Volkov E.M., Sabirova A.R., Nurullin L.F., Grishin S.K., Zefirov A.L. 2006. Effect of GABAergic and adrenergic agents on activity of Na+/K+ pump and Cl– cotransport in somatic muscle cells of earthworm Lumbricus terrestris. Bull. Experim. Biol. Med. 141 (5), 633–635. https://doi.org/10.1007/s10517-006-0239-4
Volkov E.M., Nurullin L.F., Volkov M.E., Nikolsky E.E., Vyskočil F. 2011. Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158 (4), 520–524. https://doi.org/10.1016/j.cbpa.2010.12.016
Article CAS PubMed Google Scholar
Malomouzh A.I., Petrov K.A., Nurullin L.F., Nikolsky E.E. 2015. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction. J. Neurochem. 135 (6), 1149–1160. https://doi.org/10.1111/jnc.13373
Article CAS PubMed Google Scholar
Parry L., Tanner A., Vinther J. 2014. The origin of annelids. Front. Palaeontology. 57 (6), 1091–1103. https://doi.org/10.1111/pala.12129
Purschke G., Müller M.C.M. 2006. Evolution of body wall musculature. Integr. Comp. Biol. 46 (4), 497–507. https://doi.org/10.1093/icb/icj053
Article CAS PubMed Google Scholar
Valtorta F., Pennuto M., Bonanomi D., Benfenati F. 2004. Synaptophysin: Leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays. 26 (4), 445–453. https://doi.org/10.1002/bies.20012
Article CAS PubMed Google Scholar
Kwon S.E., Chapman E.R. 2011. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron. 70 (5), 847–854. https://doi.org/10.1016/j.neuron.2011.04.001
Article CAS PubMed PubMed Central Google Scholar
Krause M., Wernig A. 1985. The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog. J. Neurocytol. 14 (5), 765–780. https://doi.org/10.1007/BF01170827
Article CAS PubMed Google Scholar
Łątka K., Jończyk J., Bajda M. 2020. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int. J. Biol. Macromol. 158, 750–772. https://doi.org/10.1016/j.ijbiomac.2020.04.126
Sallard E., Letourneur D., Legendre P. 2021. Electrophysiology of ionotropic GABA receptors. Cell. Mol. Life Sci. 78 (13), 5341–5370. https://doi.org/10.1007/s00018-021-03846-2
Article CAS PubMed PubMed Central Google Scholar
Shaye H., Stauch B., Gati C., Cherezov V. 2021. Molecular mechanisms of metabotropic GABAB receptor function. Sci Adv. 7 (22), eabg3362. https://doi.org/10.1126/sciadv.abg3362
Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. 1999. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 22 (5), 208–215. https://doi.org/10.1016/S0166-2236(98)01349-6
Article CAS PubMed Google Scholar
Melone M., Ciappelloni S., Conti F. 2014. Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex. Front. Neuroanat. 8 (72). https://doi.org/10.3389/fnana.2014.00072
Angulo M.C., Le Meur K., Kozlov A.S., Charpak S., Audinat E. 2008. GABA, a forgotten gliotransmitter. Prog. Neurobiol. 86 (3), 297–303. https://doi.org/10.1016/j.pneurobio.2008.08.002
Article CAS PubMed Google Scholar
Yoon B.E., Lee C.J. 2014. GABA as a rising gliotransmitter. Front. Neural Circuits. 8, 141. https://doi.org/10.3389/fncir.2014.00141
Article PubMed PubMed Central Google Scholar
Takács V.T., Cserép C., Schlingloff D., Pósfai B., Szőnyi A., Sos K.E., Környei Z., Dénes Á., Gulyás A.I., Freund T.F., Nyiri G. 2018. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat. Commun. 9 (1), 2848. https://doi.org/10.1038/s41467-018-05136-1
Article CAS PubMed PubMed Central Google Scholar
Saunders A., Granger A.J., Sabatini B.L. 2015. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. Elife. 27 (4), e06412. https://doi.org/10.7554/eLife.06412
Padgett C.L., Slesinger P.A. 2010. GABAB receptor coupling to G-proteins and ion channels. Adv. Pharmacol. 58, 123–147. https://doi.org/10.1016/S1054-3589(10)58006-2
Article CAS PubMed Google Scholar
Shen W., Slaughter M.M. 1999. Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. J. Physiol. 516 (Pt. 3), 711–718. https://doi.org/10.1111/j.1469-7793.1999.0711u.x
Article CAS PubMed PubMed Central Google Scholar
Carter T.J., Mynlieff M. 2004. Gamma-aminobutyric acid type B receptors facilitate L-type and attenuate N‑type Ca2+ currents in isolated hippocampal neurons. J. Neurosci. Res. 76 (3), 323–333. https://doi.org/10.1002/jnr.20085
Article CAS PubMed Google Scholar
Chalifoux J.R., Carter A.G. 2011. GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J. Neurosci. 31 (11), 4221–4232. https://doi.org/10.1523/JNEUROSCI.4561-10.2011
Article CAS PubMed PubMed Central Google Scholar
Seagar M., Lévêque C., Charvin N., Marquèze B., Martin-Moutot N., Boudier J.A., Boudier J.L., Shoji-Kasai Y., Sato K., Takahashi M. 1999. Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1381), 289–297. https://doi.org/10.1098%2Frstb.1999.0380
Article CAS PubMed PubMed Central Google Scholar
Gandini M.A., Zamponi G.W. 2022. Voltage-gated calcium channel nanodomains: Molecular composition and function. FEBS J. 289 (3), 614–633. https://doi.org/10.1111/febs.15759
Article CAS PubMed Google Scholar
Catterall W.A. 2011. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3 (8), a003947. https://doi.org/10.1101%2Fcshperspect.a003947
Article PubMed PubMed Central Google Scholar
Xue L., Zhang Z., McNeil B.D., Luo F., Wu X.S., Sheng J., Shin W., Wu L.G. 2012. Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep. 1 (6), 632–638. https://doi.org/10.1016/j.celrep.2012.04.011
Article CAS PubMed PubMed Central Google Scholar
Volkov M.E., Volkov E.M., Nurullin L.F. 2013. Immunocytochemical identification of synaptotagmin 1, syntaxin 1, Ca2+ channel of the N-type, and nicotinic cholinoreceptor in motor neuromuscular junctions of somatic muscle of the earthworm Lumbricus terrestris. Cell Tissue Biol. 7, 64–71. https://doi.org/10.1134/S1990519X13010148
Nurullin L.F., Volkov E.M. 2020. Immunofluorescent identification of α1 isoform subunits of voltage-gated Ca2+-channels of Cav1, Cav2, and Cav3 families in areas of cholinergic synapses of somatic muscles in earthworm Lumbricus terrestris. Cell Tissue Biol. 14 (4), 316–323. https://doi.org/10.1134/S1990519X20040070
Comments (0)