Reichert A.S., Neupert W. 2004. Mitochondriomics or what makes us breathe. Trends in Genetics. 20 (11), 555–562. https://doi.org/10.1016/j.tig.2004.08.012
Article CAS PubMed Google Scholar
Cho H., Cho Y.Y., Shim M.S., Lee J.Y., Lee H.S., Kang H.C. 2020. Mitochondria-targeted drug delivery in cancers. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (8), 165808. https://doi.org/10.1016/j.bbadis.2020.165808
Buchke S., Sharma M., Bora A., Relekar M., Bhanu P., Kumar J. 2022. Mitochondria-targeted, nanoparticle-based drug-delivery systems: Therapeutics for mitochondrial disorders. Life (Basel). 12 (5), 657. https://doi.org/10.3390/life12050657
Article CAS PubMed PubMed Central Google Scholar
Nelson D.L., Cox M.M. 2021. Lehninger principles of biochemistry. Bloomsbury Academic.
Rem K-G., Kelman Ya. 2021. Naglyadnaya biokhimiya (Illustrative Biochemistry). Moscow: Binom. Laboratoriya znaniy.
Bleck C.K.E., Kim, Y., Willingham, T.B., Glancy, B. 2018. Subcellular connectomic analyses of energy networks in striated muscle. Nat. Commun. 9, 5111.
Article PubMed PubMed Central Google Scholar
Valente A.J., Fonseca J., Moradi F., Foran G., Necakov A., Stuart J.A. 2019. Quantification of mitochondrial network characteristics in health and disease. Adv. Exp. Med. Biol. 1158, 183–196. https://doi.org/10.1007/978-981-13-8367-0_10
Article CAS PubMed Google Scholar
Belyakovich A.G. 1990. Izucheniye mitokhondiy i bakteriy s pomoshchyu soli tetrazoliya p-NTP (Study of mitochondria and bacteria with tetrazolium salt p-NTF). ONTI NCBI AN SSSR.
Tait S.W., Green D.R. 2013. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol. 5 (9), a008706. https://doi.org/10.1101/cshperspect.a008706
Article CAS PubMed PubMed Central Google Scholar
S Allemailem K., Almatroudi A., Alsahli M.A., Aljaghwani A., M. El-Kady A., Rahmani A.H., Khan A.A. 2021. Novel strategies for disrupting cancer-cell functions with mitochondria-targeted antitumor drug-loaded nanoformulations. Int. J. Nanomedicine. 16, 3907–3936. https://doi.org/10.2147/IJN.S303832
Article PubMed PubMed Central Google Scholar
Dong L., Neuzil J. 2019. Targeting mitochondria as an anticancer strategy. Cancer Commun. (Lond.). 39 (1), 1–3. https://doi.org/10.1186/s40880-019-0412-6
Reddy M.S., Bhattacharjee D., Jain N. 2022. Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Cell. Signalling. 92, 110279. https://doi.org/10.1016/j.cellsig.2022.110279
Hanaford A.R., Alt J., Rais R., Wang S.Z., Kaur H., Thorek D.L.J., Eberhart C.G., Slusher B.S., Martin A.M., Raabe E.H. 2019. Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Transl. Oncol. 12 (10), 1314–1322. https://doi.org/10.1016/j.tranon.2019.05.013
Article PubMed PubMed Central Google Scholar
Li Q., Zhong X., Yao W., Yu J., Wang C., Li Z., Lai S., Qu F., Fu X., Huang X., Zhang D., Liu Y., Li H. 2022. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity. J. Biol. Chem. 298 (4), 101753. https://doi.org/10.1016/j.jbc.2022.101753
Article CAS PubMed PubMed Central Google Scholar
Cao K., Riley J.S., Heilig R., Montes-Gómez A.E., Vringer E., Berthenet K., Cloix C., Elmasry Y., Spiller D.G., Ichim G., Campbell K.J., Gilmore A.P., Tait S.W.G. 2022. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Dev. Cell. 57 (10), 1211–1225. https://doi.org/10.1016/j.devcel.2022.03.019
Article CAS PubMed PubMed Central Google Scholar
Forrest M.D. 2015. Why cancer cells have a more hyperpolarised mitochondrial membrane potential and emergent prospects for therapy. BioRxiv. 025197. https://doi.org/10.1101/025197
Weiner-Gorzel K., Murphy M. 2021. Mitochondrial dynamics, a new therapeutic target for triple negative breast cancer. Biochim. Biophys. Acta, Reviews on Cancer. 1875 (2), 188518. https://doi.org/10.1016/j.bbcan.2021.188518
Bae Y., Jung M.K., Song S.J., Green E.S., Lee S., Park H.S., Jeong S.H., Han J., Mun J.Y., Ko K.S., Choi J.S. 2017. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion. 37, 27–40. https://doi.org/10.1016/j.mito.2017.06.005
Article CAS PubMed Google Scholar
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. 2017. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117 (15), 10043–10120. https://doi.org/10.1021/acs.chemrev.7b00042
Article CAS PubMed PubMed Central Google Scholar
Murphy M. P. 1997. Selective targeting of bioactive compounds to mitochondria. Trends Biotech. 15 (8), 326–330. https://doi.org/10.1016/S0167-7799(97)01068-8
Burns R.J., Smith R.A.J., Murphy M.P. 1995. Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch. Biochem. Biophys. 322 (1), 60–68. https://doi.org/10.1006/abbi.1995.1436
Article CAS PubMed Google Scholar
Burns R.J., Murphy M.P. 1997. Labeling of mitochondrial proteins in living cells by the thiol probe thiobutyltriphenylphosphonium bromide. Arch. Biochem. Biophys. 339 (1), 33–39. https://doi.org/10.1006/abbi.1996.9861
Article CAS PubMed Google Scholar
Smith R.A., Porteous C.M., Gane A.M., Murphy M.P. 2003. Delivery of bioactive molecules to mitochondria in vivo. Proc. Nat. Acad. Sci. USA. 100 (9), 5407–5412. https://doi.org/10.1073/pnas.0931245100
Article CAS PubMed PubMed Central Google Scholar
Su Y., Tu Y., Lin H., Wang M.M., Zhang G.D., Yang J., Liu H.K., Su Z. 2022. Mitochondria-targeted Pt (IV) prodrugs conjugated with an aggregation-induced emission luminogen against breast cancer cells by dual modulation of apoptosis and autophagy inhibition. J. Inorg. Biochem. 226, 111653. https://doi.org/10.1016/j.jinorgbio.2021.111653
Article CAS PubMed Google Scholar
Huang M., Myers C.R., Wang Y., You M. 2021. Mitochondria as a novel target for cancer chemoprevention: Emergence of mitochondrial-targeting agents. Cancer Prev. Res. 14 (3), 285–306. https://doi.org/10.1158/1940-6207.CAPR-20-0425
Bailly C. 2021. Medicinal applications and molecular targets of dequalinium chloride. Biochem. Pharmacol. 186, 114467. https://doi.org/10.1016/j.bcp.2021.114467
Article CAS PubMed Google Scholar
Shi M., Zhang J., Li X., Pan S., Li J., Yang C., Hu H., Qiao M., Chen D., Zhao X. 2018. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int. J. Nanomedicine. 13, 4209–4226. https://doi.org/10.2147/IJN.S163858
Article CAS PubMed PubMed Central Google Scholar
Bailly C. 2021. Medicinal applications and molecular targets of dequalinium chloride. Biochem. Pharmacol. 186, 114467. https://doi.org/10.1016/j.bcp.2021.114467
Article CAS PubMed Google Scholar
Mallick S., Thuy L.T., Lee S., Park J.I., Choi J.S. 2018. Liposomes containing cholesterol and mitochondria-penetrating peptide (MPP) for targeted delivery of antimycin A to A549 cells. Colloids Surf. B. Biointerfaces. 161, 356–364. https://doi.org/10.1016/j.colsurfb.2017.10.052
Article CAS PubMed Google Scholar
Somsri S., Mungthin M., Klubthawee N., Adisakwattana P., Hanpithakpong W., Aunpad R.A. 2021. Mitochondria-penetrating peptide exerts potent anti-plasmodium activity and localizes at parasites' mitochondria. Antibiotics (Basel). 10 (12), 1560. https://doi.org/10.3390/antibiotics10121560
Article CAS PubMed Google Scholar
Szeto H.H. 2006. Cell-permeable, mitochondrial-targeted, peptide antioxidants. The AAPS J. 8 (2), E277–E283. https://doi.org/10.1007/BF02854898
Article CAS PubMed Google Scholar
Szeto H.H., Schiller P.W. 2011. Novel therapies targeting inner mitochondrial membrane–from discovery to clinical development. Pharm. Res. 28 (11), 2669–2679. https://doi.org/10.1007/s11095-011-0476-8
Article CAS PubMed Google Scholar
Haftcheshmeh S.M, Jaafari M.R, Mashreghi M., Mehrabian A., Alavizadeh S.H, Zamani P., Zarqi J., Darvishi M.H, Gheybi F. 2021. Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. J. Drug Delivery Sci. Technol. 62, 102351. https://doi.org/10.1016/j.jddst.2021.102351
Bae Y., Kim G., Jessa F., Ko K.S., Han J. 2022. Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection. Korean J. Physiol. Pharmacol. 26, 15-24. https://doi.org/10.4196/kjpp.2022.26.1.15
Article CAS PubMed PubMed Central Google Scholar
Tee T.T., Cheah Y.H., Hawariah L.P. 2007. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells. Anticancer Res. 27 (5A), 3425–3430.
Dubinin M.V., Semenova A.A., Nedopekina D.A., Davletshin E.V., Spivak A.Y., Belosludtsev K.N. 2021. Effect of F16-betulin conjugate on mitochondrial membranes and its role in cell death initiation. Membranes. 11 (5), 352. https://doi.org/10.3390/membranes11050352
Article CAS PubMed PubMed Central Google Scholar
Dubinin M.V., Semenova A.A., Ilzorkina A.I., Penkov N.V., Nedopekina D.A., Sharapov V.A., Khoroshavina E.I., Davletshin E.V., Belosludtseva N.V., Spivak A.Y., Belosludtsev K.N. 2021. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic. Biol. Med. 168, 55–69.
Comments (0)