González-Sanabria N., Echeverría F., Segura I., Alvarado-Sánchez R., Latorre R. 2021. BK in double-membrane organelles: A biophysical, pharmacological, and functional survey. Front. Physiol. 12, 761474.
Article PubMed PubMed Central Google Scholar
Singh H., Rong L., Bopassa J., Meredith A., Stefani E., Toro L. 2013. MitoBK-Ca is encoded by the KCNMA1 gene, and a splicing sequence defines its mitochondrial location. Proc. Natl. Acad. Sci. 110, 10836–10841.
Article CAS PubMed PubMed Central Google Scholar
Wrzosek A., Augustynek B., Żochowska M., Szewczyk A. 2021. mitochondrial potassium channels as druggable targets. Biomolecules. 10 (8), 1200.
Checchetto V., Leanza L., De Stefani D., Rizzuto R., Gulbins E., Szabo I. 2021. Mitochondrial K+ channels and their implications for disease mechanisms. Pharmacol. Ther. 227, 107874.
Article CAS PubMed Google Scholar
Xu W., Liu Y., Wang S., McDonald T., Van Eyk J.E., Sidor A., O’Rourke B. 2002. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science. 298, 1029–1033.
Article CAS PubMed Google Scholar
Kulawiak B., Kudin A.P., Szewczyk A., Kunz W.S. 2008. BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp. Neurol. 212, 543–547.
Article CAS PubMed Google Scholar
Heinen A., Aldakkak M., Stowe D.F., Rhodes S.S., Riess M.L., Varadarajan S.G., Camara A.K. 2007. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. Am. J. Physiol. Heart Circ. Physiol. 293, H1400–H1407.
Article CAS PubMed Google Scholar
Wang X., Yin C., Xi L., Kukreja R.C. 2004. Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am. J. Physiol. Heart Circ. Physiol. 287, H2070–H2077.
Article CAS PubMed Google Scholar
Du X., Carvalho-De-Souza J.L., Wei C., Carrasquel-Ursulaez W., Lorenzo Y., Gonzalez N., Kubota T., Staisch J., Hain T., Petrossian N., Xu M., Latorre R., Bezanilla F., Gomez C.M. 2020. Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc. Natl. Acad. Sci. USA. 117, 6023–6034.
Article CAS PubMed PubMed Central Google Scholar
Debska G., Kicinska A., Dobrucki J., Dworakowska B., Nurowska E., Skalska J., Dolowy K., Szewczyk A. 2003. Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochem. Pharmacol. 65 (11), 1827–1834.
Article CAS PubMed Google Scholar
Kicinska A., Szewczyk A. 2004. Large-conductance potassium cation channel opener NS1619 inhibits cardiac mitochondria respiratory chain. Toxicol. Mech. Methods. 14 (1–2), 59–61.
Article CAS PubMed Google Scholar
Łukasiak A., Skup A., Chlopicki S., Łomnicka M., Kaczara P., Proniewski B., Szewczyk A., Wrzosek A. 2016. SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. Eur. J. Pharmacol. 786, 137–147.
Park W.S., Kang S.H., Son Y.K., Kim N., Ko J.H., Kim H.K., Ko E.A., Kim C.D., Han J. 2007. The mitochondrial Ca2+-activated K+ channel activator, NS 1619 inhibits L-type Ca2+ channels in rat ventricular myocytes. Biochem. Biophys. Res. Commun. 362 (1), 31–36.
Article CAS PubMed Google Scholar
Dubinin M.V., Starinets V.S., Belosludtseva N.V., Mikheeva I.B., Chelyadnikova Y.A., Igoshkina A.D., Vafina A.B., Vedernikov A.A., Belosludtsev K.N. 2022. BKCa activator NS1619 improves the structure and function of skeletal muscle mitochondria in Duchenne dystrophy. Pharmaceutics. 14, 2336.
Article CAS PubMed PubMed Central Google Scholar
Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Act-a. Mol. Basis Dis. 1866 (5), 165674.
Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrixnatrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229.
Article CAS PubMed Google Scholar
Chance B., Williams G.R. 1955. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217 (1), 383–393.
Article CAS PubMed Google Scholar
Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11(6), e0157405.
Article PubMed PubMed Central Google Scholar
Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246.
Article CAS PubMed Google Scholar
Venediktova N., Solomadin I., Nikiforova A., Starinets V., Mironova G. 2021. functional state of rat heart mitochondria in experimental hyperthyroidism. Int. J. Mol. Sci. 22, 11744.
Article CAS PubMed PubMed Central Google Scholar
Dubinin M.V., Sharapov V.A., Ilzorkina A.I., Efimov S.V., Klochkov V.V., Gudkov S.V., Belosludtsev K.N. 2022. Comparison of structural properties of cyclosporin A and its analogue alisporivir and their effects on mitochondrial bioenergetics and membrane behavior. Biochim. Biophys. Acta, Biomembr. 1864 (9), 183972.
Dubinin M.V., Starinets V.S., Talanov E.Y., Mikheeva I.B., Belosludtseva N.V., Belosludtsev K.N. 2021. Alisporivir improves mitochondrial function in skeletal muscle of mdx mice but suppresses mitochondrial dynamics and biogenesis. Int. J. Mol. Sci. 22, 9780.
Article CAS PubMed PubMed Central Google Scholar
Heinen A., Camara A.K., Aldakkak M., Rhodes S.S., Riess M.L., Stowe D.F. 2007. Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am. J. Physiol. Cell Physiol. 292 (1), C148–C156.
Article CAS PubMed Google Scholar
Bosetti F., Baracca A., Lenaz G., Solaini, G. 2004. Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. FEBS Lett. 563 (1–3), 161–164.
Article CAS PubMed Google Scholar
Zorov D.B., Juhaszova M., Sollott S. J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950.
Article CAS PubMed PubMed Central Google Scholar
Andreyev A.Y., Kushnareva Y.E., Murphy A.N., Starkov A.A. 2015 Mitochondrial ROS metabolism: 10 years later. Biochemistry. 5 (80), 517–531.
Rasola A., Bernardi P. 2011. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. 50, 222–233.
Article CAS PubMed Google Scholar
Dubinin M.V., Belosludtsev K.N. 2019. Taxonomic features of specific Ca2+ transport mechanisms in mitochondria. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 13, 194–204.
Belosludtsev K.N., Dubinin M.V., Belosludtseva N.V., Mironova G.D. 2019. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry. 6 (84), 593–607.
Olesen S. P., Munch E., Moldt P., Drejer J. 1994. Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone. Eur. J. Pharmacol. 251 (1), 53–59.
Comments (0)