Benzimidazole Derivative NS1619 Inhibits Functioning of Mitochondria Isolated from Mouse Skeletal Muscle

González-Sanabria N., Echeverría F., Segura I., Alvarado-Sánchez R., Latorre R. 2021. BK in double-membrane organelles: A biophysical, pharmacological, and functional survey. Front. Physiol. 12, 761474.

Article  PubMed  PubMed Central  Google Scholar 

Singh H., Rong L., Bopassa J., Meredith A., Stefani E., Toro L. 2013. MitoBK-Ca is encoded by the KCNMA1 gene, and a splicing sequence defines its mitochondrial location. Proc. Natl. Acad. Sci. 110, 10836–10841.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wrzosek A., Augustynek B., Żochowska M., Szewczyk A. 2021. mitochondrial potassium channels as druggable targets. Biomolecules. 10 (8), 1200.

Article  Google Scholar 

Checchetto V., Leanza L., De Stefani D., Rizzuto R., Gulbins E., Szabo I. 2021. Mitochondrial K+ channels and their implications for disease mechanisms. Pharmacol. Ther. 227, 107874.

Article  CAS  PubMed  Google Scholar 

Xu W., Liu Y., Wang S., McDonald T., Van Eyk J.E., Sidor A., O’Rourke B. 2002. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science. 298, 1029–1033.

Article  CAS  PubMed  Google Scholar 

Kulawiak B., Kudin A.P., Szewczyk A., Kunz W.S. 2008. BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp. Neurol. 212, 543–547.

Article  CAS  PubMed  Google Scholar 

Heinen A., Aldakkak M., Stowe D.F., Rhodes S.S., Riess M.L., Varadarajan S.G., Camara A.K. 2007. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. Am. J. Physiol. Heart Circ. Physiol. 293, H1400–H1407.

Article  CAS  PubMed  Google Scholar 

Wang X., Yin C., Xi L., Kukreja R.C. 2004. Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am. J. Physiol. Heart Circ. Physiol. 287, H2070–H2077.

Article  CAS  PubMed  Google Scholar 

Du X., Carvalho-De-Souza J.L., Wei C., Carrasquel-Ursulaez W., Lorenzo Y., Gonzalez N., Kubota T., Staisch J., Hain T., Petrossian N., Xu M., Latorre R., Bezanilla F., Gomez C.M. 2020. Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc. Natl. Acad. Sci. USA. 117, 6023–6034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debska G., Kicinska A., Dobrucki J., Dworakowska B., Nurowska E., Skalska J., Dolowy K., Szewczyk A. 2003. Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochem. Pharmacol. 65 (11), 1827–1834.

Article  CAS  PubMed  Google Scholar 

Kicinska A., Szewczyk A. 2004. Large-conductance potassium cation channel opener NS1619 inhibits cardiac mitochondria respiratory chain. Toxicol. Mech. Methods. 14 (1–2), 59–61.

Article  CAS  PubMed  Google Scholar 

Łukasiak A., Skup A., Chlopicki S., Łomnicka M., Kaczara P., Proniewski B., Szewczyk A., Wrzosek A. 2016. SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. Eur. J. Pharmacol. 786, 137–147.

Article  PubMed  Google Scholar 

Park W.S., Kang S.H., Son Y.K., Kim N., Ko J.H., Kim H.K., Ko E.A., Kim C.D., Han J. 2007. The mitochondrial Ca2+-activated K+ channel activator, NS 1619 inhibits L-type Ca2+ channels in rat ventricular myocytes. Biochem. Biophys. Res. Commun. 362 (1), 31–36.

Article  CAS  PubMed  Google Scholar 

Dubinin M.V., Starinets V.S., Belosludtseva N.V., Mikheeva I.B., Chelyadnikova Y.A., Igoshkina A.D., Vafina A.B., Vedernikov A.A., Belosludtsev K.N. 2022. BKCa activator NS1619 improves the structure and function of skeletal muscle mitochondria in Duchenne dystrophy. Pharmaceutics. 14, 2336.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Act-a. Mol. Basis Dis. 1866 (5), 165674.

Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrixnatrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229.

Article  CAS  PubMed  Google Scholar 

Chance B., Williams G.R. 1955. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217 (1), 383–393.

Article  CAS  PubMed  Google Scholar 

Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11(6), e0157405.

Article  PubMed  PubMed Central  Google Scholar 

Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246.

Article  CAS  PubMed  Google Scholar 

Venediktova N., Solomadin I., Nikiforova A., Starinets V., Mironova G. 2021. functional state of rat heart mitochondria in experimental hyperthyroidism. Int. J. Mol. Sci. 22, 11744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubinin M.V., Sharapov V.A., Ilzorkina A.I., Efimov S.V., Klochkov V.V., Gudkov S.V., Belosludtsev K.N. 2022. Comparison of structural properties of cyclosporin A and its analogue alisporivir and their effects on mitochondrial bioenergetics and membrane behavior. Biochim. Biophys. Acta, Biomembr. 1864 (9), 183972.

Dubinin M.V., Starinets V.S., Talanov E.Y., Mikheeva I.B., Belosludtseva N.V., Belosludtsev K.N. 2021. Alisporivir improves mitochondrial function in skeletal muscle of mdx mice but suppresses mitochondrial dynamics and biogenesis. Int. J. Mol. Sci. 22, 9780.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heinen A., Camara A.K., Aldakkak M., Rhodes S.S., Riess M.L., Stowe D.F. 2007. Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am. J. Physiol. Cell Physiol. 292 (1), C148–C156.

Article  CAS  PubMed  Google Scholar 

Bosetti F., Baracca A., Lenaz G., Solaini, G. 2004. Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. FEBS Lett. 563 (1–3), 161–164.

Article  CAS  PubMed  Google Scholar 

Zorov D.B., Juhaszova M., Sollott S. J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreyev A.Y., Kushnareva Y.E., Murphy A.N., Starkov A.A. 2015 Mitochondrial ROS metabolism: 10 years later. Biochemistry. 5 (80), 517–531.

Google Scholar 

Rasola A., Bernardi P. 2011. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. 50, 222–233.

Article  CAS  PubMed  Google Scholar 

Dubinin M.V., Belosludtsev K.N. 2019. Taxonomic features of specific Ca2+ transport mechanisms in mitochondria. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 13, 194–204.

Google Scholar 

Belosludtsev K.N., Dubinin M.V., Belosludtseva N.V., Mironova G.D. 2019. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry. 6 (84), 593–607.

Google Scholar 

Olesen S. P., Munch E., Moldt P., Drejer J. 1994. Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone. Eur. J. Pharmacol. 251 (1), 53–59.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif