Cunill-Semanat E., Salgado J. 2019. Spontaneous and stress-induced pore formation in membranes: Theory, experiments and simulations. J. Membr. Biol. 252, 241–260.
Article CAS PubMed Google Scholar
Yarmush M.L., Golberg A., Serša G., Kotnik T., Miklavčič D. 2014. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16, 295–320.
Article CAS PubMed Google Scholar
Golberg A., Sack M., Teissie J., Pataro G., Pliquett U., Saulis G., Stefan T., Miklavčič D., Vorobiev E., Frey W. 2016. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol. Biofuels. 9, 94.
Article PubMed PubMed Central Google Scholar
Kotnik T., Frey W., Sack M., Haberl Meglič S., Peterka M., Miklavčič D. 2015. Electroporation-based applications in biotechnology. Trends Biotechnol. 33, 480–488.
Article CAS PubMed Google Scholar
Mahnič-Kalamiza S., Vorobiev E., Miklavčič D. 2014. Electroporation in food processing and biorefinery. J. Membr. Biol. 247, 1279–1304.
Derjaguin B.V. 1989. Theory of stability of colloids and thin films. New York, US: Springer, p. 258.
Molotkovsky R. J., Akimov S. A. 2009. Calculation of line tension in various models of lipid bilayer pore edge. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 3, 223–230.
Batishchev O.V., Alekseeva A.S., Tretiakova D.S., Galimzyanov T.R., Chernyadyev A.Yu., Onishchenko N.R., Volynsky P.E., Boldyrev I.A. 2020. Cyclopentane rings in hydrophobic chains of a phospholipid enhance the bilayer stability to electric breakdown. Soft Matter. 16, 3216–3223.
Article CAS PubMed Google Scholar
Glaser R.W., Leikin S.L., Chernomordik L.V., Pastushenko V.F., Sokirko A.I. 1988. Reversible electrical breakdown of lipid bilayers: Formation and evolution of pores. Biochim. Biophys. Acta. 940, 275–287.
Article CAS PubMed Google Scholar
May S. 2000. A molecular model for the line tension of lipid membranes. Eur. Phys. J. 3, 37–44.
Bennett D., W. F., Sapay N., Tieleman D.P. 2014. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys. J. 106, 210–219.
Article CAS PubMed PubMed Central Google Scholar
Awasthi N., Hub J.S. 2016. Simulations of pore formation in lipid membranes: Reaction coordinates, convergence, hysteresis, and finite-size effects. J. Chem. Theory Comput. 12, 3261–3269.
Article CAS PubMed Google Scholar
Akimov S.A., Mukovozov A.A., Voronina G.F., Chizmadzhev Yu.A., Batishchev O.V. 2014. Line tension and structure of through pore edge in lipid bilayer. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 8, 297–303.
Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.
Article PubMed PubMed Central Google Scholar
Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.
Article PubMed PubMed Central Google Scholar
Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. B. 6, 519–528.
Panov P. V., Akimov S. A., Batishchev O. V. 2014. Isoprenoid lipid chains increase membrane resistance to pore formation. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 8, 304–308.
Batishchev O.V., Indenbom A.V. 2008. Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal–Mueller technique. Bioelectrochem. 74, 22–25.
Karal M.A.S., Ahamed Md.K., Rahman M., Ahmed M., Shakil Md.M., Siddique-e-Rabbani K. 2019. Effects of electrically induced constant tension on giant unilamellar vesicles using irreversible electroporation. Eur. Biophys J. 48, 731–741.
Article CAS PubMed Google Scholar
Portet T., Dimova R. 2010. A new method for measuring edge tensions and stability of lipid bilayers: Effect of membrane composition. Biophys. J. 99, 3264–3273.
Article CAS PubMed PubMed Central Google Scholar
Wu M., Ke Q., Bi J.,Li X., Huang S., Liu Z., Ge L. 2022. substantially improved electrofusion efficiency of hybridoma cells: Based on the combination of nanosecond and microsecond pulses. Bioengineering (Basel). 9, 450.
Article CAS PubMed Google Scholar
Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535.
Abidor I.G., Ajtian S.H., Chernomordic L.V., Cherny V.V., Chizmadjev Yu.A. 1980. Determination of the inner membrane potential drop by potentiodynamic method. Dokl. Acad. Nauk USSR. 245, 977–981.
Weaver J.C., Chizmadzhev Yu. A. 1996. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41, 135–160.
Lafarge E.J., Muller P., Schroder A.P., Zaitseva E., Behrends J.C., Marques C.M. 2023. Activation energy for pore opening in lipid membranes under an electric field. Proc. Natl. Acad. Sci. USA. 120, e2213112120.
Article CAS PubMed Google Scholar
Alvarez O., Latorre R. 1978. Voltage-dependent capacitance in lipid bilayers made from monolayes. Biophys. J. 21, 1–17.
Article CAS PubMed PubMed Central Google Scholar
Pastushenko V.F., Chizmadzhev Yu.A., Arakelyan V.B. 1979. Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation. Bioelectrochem. Bioenerg. 6, 53–62.
Zeldovich Y.B. 1942. On the theory of new phase formation. Cavitation. JETP. 12, 525–538.
Comments (0)