Lipid Membranes Electroporation Cannot Be Described by the Constant Line Tension Model of the Pore Edge

Cunill-Semanat E., Salgado J. 2019. Spontaneous and stress-induced pore formation in membranes: Theory, experiments and simulations. J. Membr. Biol. 252, 241–260.

Article  CAS  PubMed  Google Scholar 

Yarmush M.L., Golberg A., Serša G., Kotnik T., Miklavčič D. 2014. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16, 295–320.

Article  CAS  PubMed  Google Scholar 

Golberg A., Sack M., Teissie J., Pataro G., Pliquett U., Saulis G., Stefan T., Miklavčič D., Vorobiev E., Frey W. 2016. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol. Biofuels. 9, 94.

Article  PubMed  PubMed Central  Google Scholar 

Kotnik T., Frey W., Sack M., Haberl Meglič S., Peterka M., Miklavčič D. 2015. Electroporation-based applications in biotechnology. Trends Biotechnol. 33, 480–488.

Article  CAS  PubMed  Google Scholar 

Mahnič-Kalamiza S., Vorobiev E., Miklavčič D. 2014. Electroporation in food processing and biorefinery. J. Membr. Biol. 247, 1279–1304.

Article  PubMed  Google Scholar 

Derjaguin B.V. 1989. Theory of stability of colloids and thin films. New York, US: Springer, p. 258.

Google Scholar 

Molotkovsky R. J., Akimov S. A. 2009. Calculation of line tension in various models of lipid bilayer pore edge. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 3, 223–230.

Google Scholar 

Batishchev O.V., Alekseeva A.S., Tretiakova D.S., Galimzyanov T.R., Chernyadyev A.Yu., Onishchenko N.R., Volynsky P.E., Boldyrev I.A. 2020. Cyclopentane rings in hydrophobic chains of a phospholipid enhance the bilayer stability to electric breakdown. Soft Matter. 16, 3216–3223.

Article  CAS  PubMed  Google Scholar 

Glaser R.W., Leikin S.L., Chernomordik L.V., Pastushenko V.F., Sokirko A.I. 1988. Reversible electrical breakdown of lipid bilayers: Formation and evolution of pores. Biochim. Biophys. Acta. 940, 275–287.

Article  CAS  PubMed  Google Scholar 

May S. 2000. A molecular model for the line tension of lipid membranes. Eur. Phys. J. 3, 37–44.

CAS  Google Scholar 

Bennett D., W. F., Sapay N., Tieleman D.P. 2014. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys. J. 106, 210–219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awasthi N., Hub J.S. 2016. Simulations of pore formation in lipid membranes: Reaction coordinates, convergence, hysteresis, and finite-size effects. J. Chem. Theory Comput. 12, 3261–3269.

Article  CAS  PubMed  Google Scholar 

Akimov S.A., Mukovozov A.A., Voronina G.F., Chizmadzhev Yu.A., Batishchev O.V. 2014. Line tension and structure of through pore edge in lipid bilayer. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 8, 297–303.

Google Scholar 

Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.

Article  PubMed  PubMed Central  Google Scholar 

Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.

Article  PubMed  PubMed Central  Google Scholar 

Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. B. 6, 519–528.

Article  Google Scholar 

Panov P. V., Akimov S. A., Batishchev O. V. 2014. Isoprenoid lipid chains increase membrane resistance to pore formation. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 8, 304–308.

Google Scholar 

Batishchev O.V., Indenbom A.V. 2008. Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal–Mueller technique. Bioelectrochem. 74, 22–25.

Article  CAS  Google Scholar 

Karal M.A.S., Ahamed Md.K., Rahman M., Ahmed M., Shakil Md.M., Siddique-e-Rabbani K. 2019. Effects of electrically induced constant tension on giant unilamellar vesicles using irreversible electroporation. Eur. Biophys J. 48, 731–741.

Article  CAS  PubMed  Google Scholar 

Portet T., Dimova R. 2010. A new method for measuring edge tensions and stability of lipid bilayers: Effect of membrane composition. Biophys. J. 99, 3264–3273.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu M., Ke Q., Bi J.,Li X., Huang S., Liu Z., Ge L. 2022. substantially improved electrofusion efficiency of hybridoma cells: Based on the combination of nanosecond and microsecond pulses. Bioengineering (Basel). 9, 450.

Article  CAS  PubMed  Google Scholar 

Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535.

Article  CAS  Google Scholar 

Abidor I.G., Ajtian S.H., Chernomordic L.V., Cherny V.V., Chizmadjev Yu.A. 1980. Determination of the inner membrane potential drop by potentiodynamic method. Dokl. Acad. Nauk USSR. 245, 977–981.

Google Scholar 

Weaver J.C., Chizmadzhev Yu. A. 1996. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41, 135–160.

Article  CAS  Google Scholar 

Lafarge E.J., Muller P., Schroder A.P., Zaitseva E., Behrends J.C., Marques C.M. 2023. Activation energy for pore opening in lipid membranes under an electric field. Proc. Natl. Acad. Sci. USA. 120, e2213112120.

Article  CAS  PubMed  Google Scholar 

Alvarez O., Latorre R. 1978. Voltage-dependent capacitance in lipid bilayers made from monolayes. Biophys. J. 21, 1–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pastushenko V.F., Chizmadzhev Yu.A., Arakelyan V.B. 1979. Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation. Bioelectrochem. Bioenerg. 6, 53–62.

Article  CAS  Google Scholar 

Zeldovich Y.B. 1942. On the theory of new phase formation. Cavitation. JETP. 12, 525–538.

CAS  Google Scholar 

Comments (0)

No login
gif