Membrane-Active Mitochondria-Targeted Antitumor Agents and Drug Delivery Systems

Reichert A.S., Neupert W. 2004. Mitochondriomics or what makes us breathe. Trends in Genetics. 20 (11), 555–562. https://doi.org/10.1016/j.tig.2004.08.012

Article  CAS  PubMed  Google Scholar 

Cho H., Cho Y.Y., Shim M.S., Lee J.Y., Lee H.S., Kang H.C. 2020. Mitochondria-targeted drug delivery in cancers. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (8), 165808. https://doi.org/10.1016/j.bbadis.2020.165808

Buchke S., Sharma M., Bora A., Relekar M., Bhanu P., Kumar J. 2022. Mitochondria-targeted, nanoparticle-based drug-delivery systems: Therapeutics for mitochondrial disorders. Life (Basel). 12 (5), 657. https://doi.org/10.3390/life12050657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson D.L., Cox M.M. 2021. Lehninger principles of biochemistry. Bloomsbury Academic.

Google Scholar 

Rem K-G., Kelman Ya. 2021. Naglyadnaya biokhimiya (Illustrative Biochemistry). Moscow: Binom. Laboratoriya znaniy.

Bleck C.K.E., Kim, Y., Willingham, T.B., Glancy, B. 2018. Subcellular connectomic analyses of energy networks in striated muscle. Nat. Commun. 9, 5111.

Article  PubMed  PubMed Central  Google Scholar 

Valente A.J., Fonseca J., Moradi F., Foran G., Necakov A., Stuart J.A. 2019. Quantification of mitochondrial network characteristics in health and disease. Adv. Exp. Med. Biol. 1158, 183–196. https://doi.org/10.1007/978-981-13-8367-0_10

Article  CAS  PubMed  Google Scholar 

Belyakovich A.G. 1990. Izucheniye mitokhondiy i bakteriy s pomoshchyu soli tetrazoliya p-NTP (Study of mitochondria and bacteria with tetrazolium salt p-NTF). ONTI NCBI AN SSSR.

Tait S.W., Green D.R. 2013. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol. 5 (9), a008706. https://doi.org/10.1101/cshperspect.a008706

Article  CAS  PubMed  PubMed Central  Google Scholar 

S Allemailem K., Almatroudi A., Alsahli M.A., Aljaghwani A., M. El-Kady A., Rahmani A.H., Khan A.A. 2021. Novel strategies for disrupting cancer-cell functions with mitochondria-targeted antitumor drug-loaded nanoformulations. Int. J. Nanomedicine. 16, 3907–3936. https://doi.org/10.2147/IJN.S303832

Article  PubMed  PubMed Central  Google Scholar 

Dong L., Neuzil J. 2019. Targeting mitochondria as an anticancer strategy. Cancer Commun. (Lond.). 39 (1), 1–3. https://doi.org/10.1186/s40880-019-0412-6

Article  Google Scholar 

Reddy M.S., Bhattacharjee D., Jain N. 2022. Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Cell. Signalling. 92, 110279. https://doi.org/10.1016/j.cellsig.2022.110279

Article  CAS  Google Scholar 

Hanaford A.R., Alt J., Rais R., Wang S.Z., Kaur H., Thorek D.L.J., Eberhart C.G., Slusher B.S., Martin A.M., Raabe E.H. 2019. Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Transl. Oncol. 12 (10), 1314–1322. https://doi.org/10.1016/j.tranon.2019.05.013

Article  PubMed  PubMed Central  Google Scholar 

Li Q., Zhong X., Yao W., Yu J., Wang C., Li Z., Lai S., Qu F., Fu X., Huang X., Zhang D., Liu Y., Li H. 2022. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity. J. Biol. Chem. 298 (4), 101753. https://doi.org/10.1016/j.jbc.2022.101753

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao K., Riley J.S., Heilig R., Montes-Gómez A.E., Vringer E., Berthenet K., Cloix C., Elmasry Y., Spiller D.G., Ichim G., Campbell K.J., Gilmore A.P., Tait S.W.G. 2022. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Dev. Cell. 57 (10), 1211–1225. https://doi.org/10.1016/j.devcel.2022.03.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forrest M.D. 2015. Why cancer cells have a more hyperpolarised mitochondrial membrane potential and emergent prospects for therapy. BioRxiv. 025197. https://doi.org/10.1101/025197

Weiner-Gorzel K., Murphy M. 2021. Mitochondrial dynamics, a new therapeutic target for triple negative breast cancer. Biochim. Biophys. Acta, Reviews on Cancer. 1875 (2), 188518. https://doi.org/10.1016/j.bbcan.2021.188518

Bae Y., Jung M.K., Song S.J., Green E.S., Lee S., Park H.S., Jeong S.H., Han J., Mun J.Y., Ko K.S., Choi J.S. 2017. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion. 37, 27–40. https://doi.org/10.1016/j.mito.2017.06.005

Article  CAS  PubMed  Google Scholar 

Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. 2017. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117 (15), 10043–10120. https://doi.org/10.1021/acs.chemrev.7b00042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy M. P. 1997. Selective targeting of bioactive compounds to mitochondria. Trends Biotech. 15 (8), 326–330. https://doi.org/10.1016/S0167-7799(97)01068-8

Article  CAS  Google Scholar 

Burns R.J., Smith R.A.J., Murphy M.P. 1995. Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch. Biochem. Biophys. 322 (1), 60–68. https://doi.org/10.1006/abbi.1995.1436

Article  CAS  PubMed  Google Scholar 

Burns R.J., Murphy M.P. 1997. Labeling of mitochondrial proteins in living cells by the thiol probe thiobutyltriphenylphosphonium bromide. Arch. Biochem. Biophys. 339 (1), 33–39. https://doi.org/10.1006/abbi.1996.9861

Article  CAS  PubMed  Google Scholar 

Smith R.A., Porteous C.M., Gane A.M., Murphy M.P. 2003. Delivery of bioactive molecules to mitochondria in vivo. Proc. Nat. Acad. Sci. USA. 100 (9), 5407–5412. https://doi.org/10.1073/pnas.0931245100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su Y., Tu Y., Lin H., Wang M.M., Zhang G.D., Yang J., Liu H.K., Su Z. 2022. Mitochondria-targeted Pt (IV) prodrugs conjugated with an aggregation-induced emission luminogen against breast cancer cells by dual modulation of apoptosis and autophagy inhibition. J. Inorg. Biochem. 226, 111653. https://doi.org/10.1016/j.jinorgbio.2021.111653

Article  CAS  PubMed  Google Scholar 

Huang M., Myers C.R., Wang Y., You M. 2021. Mitochondria as a novel target for cancer chemoprevention: Emergence of mitochondrial-targeting agents. Cancer Prev. Res. 14 (3), 285–306. https://doi.org/10.1158/1940-6207.CAPR-20-0425

Article  CAS  Google Scholar 

Bailly C. 2021. Medicinal applications and molecular targets of dequalinium chloride. Biochem. Pharmacol. 186, 114467. https://doi.org/10.1016/j.bcp.2021.114467

Article  CAS  PubMed  Google Scholar 

Shi M., Zhang J., Li X., Pan S., Li J., Yang C., Hu H., Qiao M., Chen D., Zhao X. 2018. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int. J. Nanomedicine. 13, 4209–4226. https://doi.org/10.2147/IJN.S163858

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bailly C. 2021. Medicinal applications and molecular targets of dequalinium chloride. Biochem. Pharmacol. 186, 114467. https://doi.org/10.1016/j.bcp.2021.114467

Article  CAS  PubMed  Google Scholar 

Mallick S., Thuy L.T., Lee S., Park J.I., Choi J.S. 2018. Liposomes containing cholesterol and mitochondria-penetrating peptide (MPP) for targeted delivery of antimycin A to A549 cells. Colloids Surf. B. Biointerfaces. 161, 356–364. https://doi.org/10.1016/j.colsurfb.2017.10.052

Article  CAS  PubMed  Google Scholar 

Somsri S., Mungthin M., Klubthawee N., Adisakwattana P., Hanpithakpong W., Aunpad R.A. 2021. Mitochondria-penetrating peptide exerts potent anti-plasmodium activity and localizes at parasites' mitochondria. Antibiotics (Basel). 10 (12), 1560. https://doi.org/10.3390/antibiotics10121560

Article  CAS  PubMed  Google Scholar 

Szeto H.H. 2006. Cell-permeable, mitochondrial-targeted, peptide antioxidants. The AAPS J. 8 (2), E277–E283. https://doi.org/10.1007/BF02854898

Article  CAS  PubMed  Google Scholar 

Szeto H.H., Schiller P.W. 2011. Novel therapies targeting inner mitochondrial membrane–from discovery to clinical development. Pharm. Res. 28 (11), 2669–2679. https://doi.org/10.1007/s11095-011-0476-8

Article  CAS  PubMed  Google Scholar 

Haftcheshmeh S.M, Jaafari M.R, Mashreghi M., Mehrabian A., Alavizadeh S.H, Zamani P., Zarqi J., Darvishi M.H, Gheybi F. 2021. Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. J. Drug Delivery Sci. Technol. 62, 102351. https://doi.org/10.1016/j.jddst.2021.102351

Article  CAS  Google Scholar 

Bae Y., Kim G., Jessa F., Ko K.S., Han J. 2022. Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection. Korean J. Physiol. Pharmacol. 26, 15-24. https://doi.org/10.4196/kjpp.2022.26.1.15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tee T.T., Cheah Y.H., Hawariah L.P. 2007. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells. Anticancer Res. 27 (5A), 3425–3430.

PubMed  Google Scholar 

Dubinin M.V., Semenova A.A., Nedopekina D.A., Davletshin E.V., Spivak A.Y., Belosludtsev K.N. 2021. Effect of F16-betulin conjugate on mitochondrial membranes and its role in cell death initiation. Membranes. 11 (5), 352. https://doi.org/10.3390/membranes11050352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubinin M.V., Semenova A.A., Ilzorkina A.I., Penkov N.V., Nedopekina D.A., Sharapov V.A., Khoroshavina E.I., Davletshin E.V., Belosludtseva N.V., Spivak A.Y., Belosludtsev K.N. 2021. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic. Biol. Med. 168, 55–69.

留言 (0)

沒有登入
gif