Abatzopoulos TJ, Kastritsis CD, Triantaphyllidis CD (1986) A study of karyotypes and heterochromatic associations in Artemia, with special reference to 2n-Greek populations. Genetica 71:3–10. https://doi.org/10.1007/BF00123227
Abatzopoulos TJ, Beardmore JA, Clegg JS, Sorgeloos P (2002) Artemia: basic and applied biology. Kluwer Academic Publishers, Netherlands. https://doi.org/10.1007/978-94-017-0791-6
Archetti M (2010) Complementation, genetic conflict, and the evolution of sex and recombination. J Hered 101(Suppl 1):S21-33. https://doi.org/10.1093/jhered/esq009
Article CAS PubMed Google Scholar
Artom C (1907) La maturazione, la fecondazione, e i primi stadi di sviluppo dell’uovo della Artemia salina L. di Cagliari. Biologica Torino 1:495–515
Asem A, Sun SC (2016) Morphological differentiation of seven parthenogenetic Artemia (Crustacea: Branchiopoda) populations from China, with special emphasis on ploidy degrees. Microsc Res Tech 79:258–266. https://doi.org/10.1002/jemt.22625
Asher JH Jr (1970) Parthenogenesis and genetic variability. II. One-locus models for various diploid populations. Genetics 66:369–391. https://doi.org/10.1093/genetics/66.2.369
Article PubMed PubMed Central Google Scholar
Barigozzi C (1941) I fenomeni cromosomici Delle cellule germinali in Artemia salina Leach. Chromosoma 2:549–575
Baudry E, Kryger P, Allsopp M, Koeniger N, Vautrin D, Mougel F, Cornuet JM, Solignac M (2004) Whole-genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis. Genetics 167:243–252. https://doi.org/10.1534/genetics.167.1.243
Article CAS PubMed PubMed Central Google Scholar
Baxevanis AD, Kappas I, Abatzopoulos TJ (2006) Molecular phylogenetics and asexuality in the brine shrimp Artemia. Mol Phylogenet Evol 40:724–738. https://doi.org/10.1016/j.ympev.2006.04.010
Article CAS PubMed Google Scholar
Becks L, Agrawal AF (2012) The evolution of sex is favoured during adaptation to new environments. PLoS Biol 10:e1001317. https://doi.org/10.1371/journal.pbio.1001317
Article CAS PubMed PubMed Central Google Scholar
Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456. https://doi.org/10.1016/0092-8674(92)90446-J
Article CAS PubMed Google Scholar
Brown MS, Bishop DK (2014) DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb Perspect Biol 7:a0116659. https://doi.org/10.1101/cshperspect.a016659
Browne RA (1992) Population genetics and ecology of Artemia: insights into parthenogenetic reproduction. Trends Ecol Evol 7:232–237. https://doi.org/10.1016/0169-5347(92)90051-C
Article CAS PubMed Google Scholar
Chan YL, Bishop DK (2018) Purification of Saccharomyces cerevisiae homologous recombination proteins Dmc1 and Rdh54/Tid1 and a fluorescent D-Loop assay. Meth Enzymol 600:307–320. https://doi.org/10.1016/bs.mie.2017.12.003
Chun J, Buechelmaier ES, Powell SN (2013) Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol 33:387–395. https://doi.org/10.1128/MCB.00465-12
Article CAS PubMed PubMed Central Google Scholar
Cloud V, Chan YL, Grubb J, Budke B, Bishop DK (2012) Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337:1222–1225. https://doi.org/10.1126/science.1219379
Article CAS PubMed PubMed Central Google Scholar
Cuellar O (1977) Animal parthenogenesis. Science 197:837–843. https://doi.org/10.1126/science.887925
Dai JQ, Zhu XJ, Liu FQ, Xiang JH, Nagasawa H, Yang WJ (2008) Involvement of p90 ribosomal S6 kinase in termination of cell cycle arrest during development of Artemia-encysted embryos. J Biol Chem 283:1705–1712. https://doi.org/10.1074/jbc.M707853200
Article CAS PubMed Google Scholar
Dale B, Marino M, Wilding M (1999) The ins and outs of meiosis. J Exp Biol 285:226–236. https://doi.org/10.1002/(SICI)1097-010X(19991015)285:3<226::AID-JEZ5>3.3.CO;2-Q
Decaestecker E, De Meester L, Mergeay J (2009) Cyclical parthenogenesis in Daphnia: sexual versus asexual reproduction. In: Schön I, Martens K, Dijk P (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer Netherlands, Dordrecht, pp, 295–316. https://doi.org/10.1007/978-90-481-2770-2_15
D’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e1000124. https://doi.org/10.1371/journal.pbio.1000124
Article CAS PubMed PubMed Central Google Scholar
Domes K, Norton RA, Maraun M, Scheu S (2007) Reevolution of sexuality breaks Dollo’s law. Proc Natl Acad Sci USA 104:7139–7144. https://doi.org/10.1073/pnas.0700034104
Article CAS PubMed PubMed Central Google Scholar
Duncan EJ, Leask MP, Dearden PK (2013) The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Dev Biol 377:262–274. https://doi.org/10.1016/j.ydbio.2013.01.036
Article CAS PubMed Google Scholar
Eads BD, Tsuchiya D, Andrews J, Lynch M, Zolan ME (2012) The spread of a transposon insertion in Rec8 is associated with obligate asexuality in Daphnia. Proc Natl Acad Sci U S A 109:858–863. https://doi.org/10.1073/pnas.1119667109
Article PubMed PubMed Central Google Scholar
Eimanifar A, Van Stappen G, Wink M (2015) Geographical distribution and evolutionary divergence times of Asian populations of the brine shrimp Artemia (Crustacea, Anostraca). Zool J Linn Soc 174:447–458. https://doi.org/10.1111/zoj.12242
Engelstadter J (2008) Constraints on the evolution of asexual reproduction. BioEssays 30:1138–1150. https://doi.org/10.1002/bies.20833
Article CAS PubMed Google Scholar
Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600. https://doi.org/10.1093/emboj/20.3.589
Article CAS PubMed PubMed Central Google Scholar
Haag CR, Theodosiou L, Zahab R, Lenormand T (2017) Low recombination rates in sexual species and sex-asex transitions. Philos Trans R Soc Lond B Biol Sci 372:20160461. https://doi.org/10.1098/rstb.2016.0461
Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 20:392–402. https://doi.org/10.1111/j.1420-9101.2006.01183.x
Article CAS PubMed Google Scholar
Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res 18:833–840. https://doi.org/10.1007/s10577-010-9159-2
Article CAS PubMed Google Scholar
Hodges CA, Hunt PA (2002) Simultaneous analysis of chromosomes and chromosome-associated proteins in mammalian oocytes and embryos. Chromosoma 111:165–169. https://doi.org/10.1007/s00412-002-0195-3
Article CAS PubMed Google Scholar
Howard-Till RA, Lukaszewicz A, Loidl J (2011) The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena. PLoS Genet 7:e1001359. https://doi.org/10.1371/journal.pgen.1001359
Hunter N (2015) Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol 7:a016618. https://doi.org/10.1101/cshperspect.a016618
Huylmans AK, Macon A, Hontoria F, Vicoso B (2021) Transitions to asexuality and evolution of gene expression in Artemia brine shrimp. Proc Biol Sci 288:20211720. https://doi.org/10.1098/rspb.2021.1720
Article PubMed PubMed Central Google Scholar
Hwang GH, Hopkins JL, Jordan PW (2018) Chromatin spread preparations for the analysis of mouse oocyte progression from prophase to metaphase II. J Vis Exp 132:e56736. https://doi.org/10.3791/56736
Kato M, Hiruta C, Tochinai S (2016) The behavior of chromosomes during parthenogenetic oogenesis in marmorkrebs Procambarus fallax f. virginalis. Zool Sci 33:426–430. https://doi.org/10.2108/zs160018
Lewis SC, Dyal LA, Hilburn CF, Weitz S, Liau WS, Lamunyon CW, Denver DR (2009) Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P davidi. BMC Evol Biol 9:15. https://doi.org/10.1186/1471-2148-9-15
Article CAS PubMed PubMed Central Google Scholar
Liu Y-L, Zhao Y, Dai Z-M, Chen H-M, Yang W-J (2009) Formation of diapause cyst shell in brine shrimp, Artemia parthenogenetica, and its resistance role in environmental stresses. J Biol Chem 284:16931–16938. https://doi.org/10.1074/jbc.M109.004051
Article CAS PubMed PubMed Central Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
Article CAS PubMed PubMed Central Google Scholar
Maccari M, Amat F, Gomez A (2013a) Origin and genetic diversity of diploid parthenogenetic Artemia in Eurasia. PLoS One 8:e83348. https://doi.org/10.1371/journal.pone.0083348
Article CAS PubMed PubMed Central Google Scholar
Maccari M, Gomez A, Hontoria F, Amat F (2013b) Functional rare males in diploid parthenogenetic Artemia. J Evol Biol 26:1934–1948. https://doi.org/10.1111/jeb.12191
Article CAS PubMed Google Scholar
Maccari M, Amat F, Hontoria F, Gomez A (2014) Laboratory generation of new parthenogenetic lineages supports contagious parthenogenesis in Artemia. PEERJ 2:e439. https://doi.org/10.7717/peerj.439
Maniatsi S, Baxevanis AD, Kappas I, Deligiannidis P, Triantafyllidis A, Papakostas S, Bougiouklis D, Abatzopoulos TJ (2011) Is polyploidy a persevering accident or an adaptive evolutionary pattern? The case of the brine shrimp Artemia. Mol Phylogenet Evol 58:353–364. https://doi.org/10.1016/j.ympev.2010.11.029
Comments (0)