Vertebrate centromere architecture: from chromatin threads to functional structures

Alexandrov IA, Mitkevich SP, Yurov YB (1988) The phylogeny of human chromosome specific alpha satellites. Chromosoma 96(6):443. https://doi.org/10.1007/BF00303039

Article  CAS  PubMed  Google Scholar 

Ali-Ahmad A, Sekulić N (2020) CENP-A nucleosome - a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays Biochem 64(2):205. https://doi.org/10.1042/ebc20190074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3(1). https://doi.org/10.1186/1756-8935-3-6

Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA, Caldas GV, Hoyt SJ, Uralsky L, Ryabov FD, Shew CJ, Sauria MEG, Borchers M, Gershman A, Mikheenko A, Shepelev VA, Dvorkina T, Kunyavskaya O, Vollger MR, Rhie A, … Miga KH (2022a) Complete genomic and epigenetic maps of human centromeres. Science (New York, N.Y.) 376(6588):eabl4178. https://doi.org/10.1126/science.abl4178

Altemose N, Maslan A, Smith OK, Sundararajan K, Brown RR, Mishra R, Detweiler AM, Neff N, Miga KH, Straight AF, Streets A (2022b) DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat Methods 19(6):711. https://doi.org/10.1038/s41592-022-01475-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antonin W, Neumann H (2016) Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 40:15. https://doi.org/10.1016/j.ceb.2016.01.013

Article  CAS  PubMed  Google Scholar 

Barra V, Fachinetti D (2018) The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-06545-y

Batty P, Gerlich DW (2019) Mitotic chromosome mechanics: how cells segregate their genome. Trends Cell Biol 29(9):717. https://doi.org/10.1016/j.tcb.2019.05.007

Article  PubMed  Google Scholar 

Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2(3):319–330. https://doi.org/10.1016/S1534-5807(02)00135-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bobkov GOM, Gilbert N, Heun P (2018) Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J Cell Biol 217(6):1957. https://doi.org/10.1083/jcb.201611087

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bodor DL, Mata JF, Sergeev M, David AF, Salimian KJ, Panchenko T, Cleveland DW, Black BE, Shah JV, Jansen LET (2014) The quantitative architecture of centromeric chromatin. Elife 2014(3). https://doi.org/10.7554/ELIFE.02137

Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S, Zhu D, Shilatifard A, Workman JL, Gerton JL (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35(6):794. https://doi.org/10.1016/j.molcel.2009.07.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao S, Zhou K, Zhang Z, Luger K, Straight AF (2018) Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell. Mol Biol Cell 29(6):751. https://doi.org/10.1091/mbc.E17-10-0596

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189(7):1143. https://doi.org/10.1083/jcb.201001013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carroll CW, Silva MCC, Godek KM, Jansen LET, Straight AF (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11(7):896. https://doi.org/10.1038/ncb1899

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KHA, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109(6):1979–1984.https://doi.org/10.1073/pnas.1108705109

Chardon F, Japaridze A, Witt H, Velikovsky L, Chakraborty C, Wilhelm T, Dumont M, Yang W, Kikuti C, Gangnard S, Mace A-S, Wuite G, Dekker C, Fachinetti D (2022) CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Mol Cell 82(9):1751-1767.e8. https://doi.org/10.1016/j.molcel.2022.02.032

Article  CAS  PubMed  Google Scholar 

Chik JK, Moiseeva V, Goel PK, Meinen BA, Koldewey P, An S, Mellone BG, Subramanian L, Cho US (2019) Structures of CENP-C cupin domains at regional centromeres reveal unique patterns of dimerization and recruitment functions for the inner pocket. J Biol Chem 294(38):14119. https://doi.org/10.1074/jbc.RA119.008464

Article  PubMed  PubMed Central  Google Scholar 

Chittori S, Hong J, Saunders H, Feng H, Ghirlando R, Kelly AE, Bai Y, Subramaniam S (2018) Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science 359(6373):339. https://doi.org/10.1126/science.aar2781

Article  CAS  PubMed  Google Scholar 

Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 152(3):517. https://doi.org/10.1083/jcb.153.3.517

Article  Google Scholar 

Cohen RL, Espelin CW, De Wulf P, Sorger PK, Harrison SC, Simons KT (2008) Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. Mol Biol Cell 19(10):4480. https://doi.org/10.1091/mbc.E08-03-0297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cojoc G, Roscioli E, Zhang L, García-Ulloa A, Shah JV, Berns MW, Pavin N, Cimini D, Tolic IM, Gregan J (2016) Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 212(7):767. https://doi.org/10.1083/jcb.201506011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson IF, Peters JM (2021) Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 22(7):445. https://doi.org/10.1038/s41580-021-00349-7

Article  CAS  PubMed  Google Scholar 

Debose-Scarlett EM, Sullivan BA (2021) Genomic and epigenetic foundations of neocentromere formation. Annu Rev Genet 55:331. https://doi.org/10.1146/annurev-genet-071719-020924

Article  CAS  PubMed  Google Scholar 

Di Tommaso E, de Turris V, Choppakatla P, Funabiki H, Giunta S (2023) Visualization of the three-dimensional structure of the human centromere in mitotic chromosomes by superresolution microscopy. Mol Biol Cell 34(6). https://doi.org/10.1091/mbc.E22-08-0332

Earnshaw WC, Ratrie H, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98(1):1. https://doi.org/10.1007/BF00293329

Article  CAS  PubMed  Google Scholar 

Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91(3–4):313. https://doi.org/10.1007/BF00328227

Article  CAS  PubMed  Google Scholar 

Earnshaw WC, Sullivan KF, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104(4):817. https://doi.org/10.1083/jcb.104.4.817

Article  CAS  PubMed  Google Scholar 

El Yakoubi W, Akera T (2023) Condensin dysfunction is a reproductive isolating barrier in mice. Nature 623(7986):347. https://doi.org/10.1038/s41586-023-06700-6

Article  CAS  PubMed  Google Scholar 

Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ, Cleveland DW (2015) DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell 33(3):314–327. https://doi.org/10.1016/j.devcel.2015.03.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flemming W (1879) Beitrage zur Kenntniss der Zelle und ihrer Lebenserscheinungen. Archiv Mikrosk Anatomie 16(1):302. https://doi.org/10.1007/BF02956386

Article  Google Scholar 

Fukagawa T, Earnshaw WC (2

Comments (0)

No login
gif