Alexandrov IA, Mitkevich SP, Yurov YB (1988) The phylogeny of human chromosome specific alpha satellites. Chromosoma 96(6):443. https://doi.org/10.1007/BF00303039
Article CAS PubMed Google Scholar
Ali-Ahmad A, Sekulić N (2020) CENP-A nucleosome - a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays Biochem 64(2):205. https://doi.org/10.1042/ebc20190074
Article CAS PubMed PubMed Central Google Scholar
Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3(1). https://doi.org/10.1186/1756-8935-3-6
Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA, Caldas GV, Hoyt SJ, Uralsky L, Ryabov FD, Shew CJ, Sauria MEG, Borchers M, Gershman A, Mikheenko A, Shepelev VA, Dvorkina T, Kunyavskaya O, Vollger MR, Rhie A, … Miga KH (2022a) Complete genomic and epigenetic maps of human centromeres. Science (New York, N.Y.) 376(6588):eabl4178. https://doi.org/10.1126/science.abl4178
Altemose N, Maslan A, Smith OK, Sundararajan K, Brown RR, Mishra R, Detweiler AM, Neff N, Miga KH, Straight AF, Streets A (2022b) DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat Methods 19(6):711. https://doi.org/10.1038/s41592-022-01475-6
Article CAS PubMed PubMed Central Google Scholar
Antonin W, Neumann H (2016) Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 40:15. https://doi.org/10.1016/j.ceb.2016.01.013
Article CAS PubMed Google Scholar
Barra V, Fachinetti D (2018) The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-06545-y
Batty P, Gerlich DW (2019) Mitotic chromosome mechanics: how cells segregate their genome. Trends Cell Biol 29(9):717. https://doi.org/10.1016/j.tcb.2019.05.007
Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2(3):319–330. https://doi.org/10.1016/S1534-5807(02)00135-1
Article CAS PubMed PubMed Central Google Scholar
Bobkov GOM, Gilbert N, Heun P (2018) Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J Cell Biol 217(6):1957. https://doi.org/10.1083/jcb.201611087
Article CAS PubMed PubMed Central Google Scholar
Bodor DL, Mata JF, Sergeev M, David AF, Salimian KJ, Panchenko T, Cleveland DW, Black BE, Shah JV, Jansen LET (2014) The quantitative architecture of centromeric chromatin. Elife 2014(3). https://doi.org/10.7554/ELIFE.02137
Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S, Zhu D, Shilatifard A, Workman JL, Gerton JL (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35(6):794. https://doi.org/10.1016/j.molcel.2009.07.022
Article CAS PubMed PubMed Central Google Scholar
Cao S, Zhou K, Zhang Z, Luger K, Straight AF (2018) Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell. Mol Biol Cell 29(6):751. https://doi.org/10.1091/mbc.E17-10-0596
Article CAS PubMed PubMed Central Google Scholar
Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189(7):1143. https://doi.org/10.1083/jcb.201001013
Article CAS PubMed PubMed Central Google Scholar
Carroll CW, Silva MCC, Godek KM, Jansen LET, Straight AF (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11(7):896. https://doi.org/10.1038/ncb1899
Article CAS PubMed PubMed Central Google Scholar
Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KHA, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109(6):1979–1984.https://doi.org/10.1073/pnas.1108705109
Chardon F, Japaridze A, Witt H, Velikovsky L, Chakraborty C, Wilhelm T, Dumont M, Yang W, Kikuti C, Gangnard S, Mace A-S, Wuite G, Dekker C, Fachinetti D (2022) CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Mol Cell 82(9):1751-1767.e8. https://doi.org/10.1016/j.molcel.2022.02.032
Article CAS PubMed Google Scholar
Chik JK, Moiseeva V, Goel PK, Meinen BA, Koldewey P, An S, Mellone BG, Subramanian L, Cho US (2019) Structures of CENP-C cupin domains at regional centromeres reveal unique patterns of dimerization and recruitment functions for the inner pocket. J Biol Chem 294(38):14119. https://doi.org/10.1074/jbc.RA119.008464
Article PubMed PubMed Central Google Scholar
Chittori S, Hong J, Saunders H, Feng H, Ghirlando R, Kelly AE, Bai Y, Subramaniam S (2018) Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science 359(6373):339. https://doi.org/10.1126/science.aar2781
Article CAS PubMed Google Scholar
Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 152(3):517. https://doi.org/10.1083/jcb.153.3.517
Cohen RL, Espelin CW, De Wulf P, Sorger PK, Harrison SC, Simons KT (2008) Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. Mol Biol Cell 19(10):4480. https://doi.org/10.1091/mbc.E08-03-0297
Article CAS PubMed PubMed Central Google Scholar
Cojoc G, Roscioli E, Zhang L, García-Ulloa A, Shah JV, Berns MW, Pavin N, Cimini D, Tolic IM, Gregan J (2016) Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 212(7):767. https://doi.org/10.1083/jcb.201506011
Article CAS PubMed PubMed Central Google Scholar
Davidson IF, Peters JM (2021) Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 22(7):445. https://doi.org/10.1038/s41580-021-00349-7
Article CAS PubMed Google Scholar
Debose-Scarlett EM, Sullivan BA (2021) Genomic and epigenetic foundations of neocentromere formation. Annu Rev Genet 55:331. https://doi.org/10.1146/annurev-genet-071719-020924
Article CAS PubMed Google Scholar
Di Tommaso E, de Turris V, Choppakatla P, Funabiki H, Giunta S (2023) Visualization of the three-dimensional structure of the human centromere in mitotic chromosomes by superresolution microscopy. Mol Biol Cell 34(6). https://doi.org/10.1091/mbc.E22-08-0332
Earnshaw WC, Ratrie H, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98(1):1. https://doi.org/10.1007/BF00293329
Article CAS PubMed Google Scholar
Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91(3–4):313. https://doi.org/10.1007/BF00328227
Article CAS PubMed Google Scholar
Earnshaw WC, Sullivan KF, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104(4):817. https://doi.org/10.1083/jcb.104.4.817
Article CAS PubMed Google Scholar
El Yakoubi W, Akera T (2023) Condensin dysfunction is a reproductive isolating barrier in mice. Nature 623(7986):347. https://doi.org/10.1038/s41586-023-06700-6
Article CAS PubMed Google Scholar
Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ, Cleveland DW (2015) DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell 33(3):314–327. https://doi.org/10.1016/j.devcel.2015.03.020
Article CAS PubMed PubMed Central Google Scholar
Flemming W (1879) Beitrage zur Kenntniss der Zelle und ihrer Lebenserscheinungen. Archiv Mikrosk Anatomie 16(1):302. https://doi.org/10.1007/BF02956386
Fukagawa T, Earnshaw WC (2
Comments (0)