Novel centromeric repetitive DNA elements reveal karyotype dynamics in polyploid sainfoin (Onobrychis viciifolia)

Ávila Robledillo L, Koblížková A, Novák P et al (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 8:5838. https://doi.org/10.1038/s41598-018-24196-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ávila Robledillo L, Neumann P, Koblížková A et al (2020) Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol 37:2341–2356. https://doi.org/10.1093/molbev/msaa090

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badoux S (1965) Étude des caractères morphologiques,physiologiques et agronomiques de populations d’esparcette (Onobrychis spp). Recherche Agronomique Suisse 4:111–190 [In French]

Google Scholar 

Black EM, Giunta S (2018) Repetitive Fragile sites: Centromere Satellite DNA as a source of Genome Instability in Human diseases. Genes (Basel) 9:615. https://doi.org/10.3390/genes9120615

Article  CAS  PubMed  Google Scholar 

Carbonero CH, Mueller-Harvey I, Brown TA, Smith L (2011) Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genet Resour 9:70–85. https://doi.org/10.1017/S1479262110000328

Article  CAS  Google Scholar 

Çeliktaş N, Can E, Hatipoğlu R, Avcı S (2006) Somatic embryogenesis, callus production, and plantlet growth in sainfoin (Onobrychis viciifolia Scop). New Zeal J Agri Res 49:383–388. https://doi.org/10.1080/00288233.2006.9513728

Article  Google Scholar 

Comai L, Maheshwari S, Marimuthu MPA (2017) ​Plant centromeres​. Curr Opin Plant Biol 36:158–167. https://doi.org/10.1016/j.pbi.2017.03.003

Article  CAS  PubMed  Google Scholar 

Craine EB, Şakiroğlu M, Peters TE et al (2023) Nutritional quality of Onobrychis viciifolia (Scop.) Seeds: a potentially novel perennial pulse crop for human use. Legume Sci 5:e189. https://doi.org/10.1002/leg3.189

Article  CAS  Google Scholar 

Deb SK, Edger PP, Pires JC, McKain MR (2023) Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. New Phytol 238:2284–2304. https://doi.org/10.1111/nph.18927

Article  CAS  PubMed  Google Scholar 

Dover GA (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165. https://doi.org/10.1016/0168-9525(86)90211-8

Article  CAS  Google Scholar 

Duan L, Li S-J, Su C et al (2021) Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe Wisterieae. Mol Phylogenet Evol 163:107235. https://doi.org/10.1016/j.ympev.2021.107235

Article  PubMed  Google Scholar 

Garcia S, Garnatje T, Kovařík A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121:389–394. https://doi.org/10.1007/s00412-012-0368-7

Article  CAS  PubMed  Google Scholar 

Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865

Article  CAS  PubMed  PubMed Central  Google Scholar 

He J, Tian D, Li X et al (2024) A chromosome-level genome assembly for Onobrychis viciifolia reveals gene copy number gain underlying enhanced proanthocyanidin biosynthesis. Commun Biol 7:1–13. https://doi.org/10.1038/s42003-023-05754-6

Article  CAS  Google Scholar 

Heitkam T, Petrasch S, Zakrzewski F et al (2015) Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 23:791–806. https://doi.org/10.1007/s10577-015-9500-x

Article  CAS  PubMed  Google Scholar 

Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102. https://doi.org/10.1126/science.1062939

Article  CAS  PubMed  Google Scholar 

Ishii T, Juranić M, Maheshwari S et al (2020) Unequal contribution of two paralogous CENH3 variants in cowpea centromere function. Commun Biol 3:1–12. https://doi.org/10.1038/s42003-020-01507-x

Article  CAS  Google Scholar 

Iwata A, Tek AL, Richard MMS et al (2013) Identification and characterization of functional centromeres of the common bean. Plant J 76:47–60. https://doi.org/10.1111/tpj.12269

Article  CAS  PubMed  Google Scholar 

Iwata-Otsubo A, Lin J-Y, Gill N, Jackson SA (2016) Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Res 24:197–216. https://doi.org/10.1007/s10577-015-9515-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia K-H, Wang Z-X, Wang L et al (2022) SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol 235:801–809. https://doi.org/10.1111/nph.18173

Article  CAS  PubMed  Google Scholar 

Kempf K, Grieder C, Walter A et al (2015) Evidence and consequences of self-fertilisation in the predominantly outbreeding forage legume Onobrychis viciifolia. BMC Genet 16:117. https://doi.org/10.1186/s12863-015-0275-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kempf K, Mora-Ortiz M, Smith LMJ et al (2016) Characterization of novel SSR markers in diverse sainfoin (Onobrychis viciifolia) germplasm. BMC Genet 17:124. https://doi.org/10.1186/s12863-016-0431-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong W, Wang Y, Zhang S et al (2023) Recent advances in assembly of complex plant genomes. Genom Proteom Bioinform 21:427–439. https://doi.org/10.1016/j.gpb.2023.04.004

Article  Google Scholar 

Křivánková A, Kopecký D, Stočes Š et al (2017) Repetitive DNA: a versatile tool for karyotyping in Festuca pratensis huds. Cytogenet Genome Res 151:96–105. https://doi.org/10.1159/000462915

Article  CAS  PubMed  Google Scholar 

Liao X, Zhu W, Zhou J et al (2023) Repetitive DNA sequence detection and its role in the human genome. Commun Biol 6:1–21. https://doi.org/10.1038/s42003-023-05322-y

Article  Google Scholar 

Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinform 12:164–171. https://doi.org/10.1016/j.gpb.2014.07.003

Article  Google Scholar 

Naish M, Alonge M, Wlodzimierz P et al (2021) The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374:eabi7489. https://doi.org/10.1126/science.abi7489

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neumann P, Nouzová M, Macas J (2001) Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L). Genome 44:716–728

Article  CAS  PubMed  Google Scholar 

Novák P, Neumann P, Pech J et al (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793. https://doi.org/10.1093/bioinformatics/btt054

Article  CAS  PubMed 

Comments (0)

No login
gif