Ávila Robledillo L, Koblížková A, Novák P et al (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 8:5838. https://doi.org/10.1038/s41598-018-24196-3
Article CAS PubMed PubMed Central Google Scholar
Ávila Robledillo L, Neumann P, Koblížková A et al (2020) Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol 37:2341–2356. https://doi.org/10.1093/molbev/msaa090
Article CAS PubMed PubMed Central Google Scholar
Badoux S (1965) Étude des caractères morphologiques,physiologiques et agronomiques de populations d’esparcette (Onobrychis spp). Recherche Agronomique Suisse 4:111–190 [In French]
Black EM, Giunta S (2018) Repetitive Fragile sites: Centromere Satellite DNA as a source of Genome Instability in Human diseases. Genes (Basel) 9:615. https://doi.org/10.3390/genes9120615
Article CAS PubMed Google Scholar
Carbonero CH, Mueller-Harvey I, Brown TA, Smith L (2011) Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genet Resour 9:70–85. https://doi.org/10.1017/S1479262110000328
Çeliktaş N, Can E, Hatipoğlu R, Avcı S (2006) Somatic embryogenesis, callus production, and plantlet growth in sainfoin (Onobrychis viciifolia Scop). New Zeal J Agri Res 49:383–388. https://doi.org/10.1080/00288233.2006.9513728
Comai L, Maheshwari S, Marimuthu MPA (2017) Plant centromeres. Curr Opin Plant Biol 36:158–167. https://doi.org/10.1016/j.pbi.2017.03.003
Article CAS PubMed Google Scholar
Craine EB, Şakiroğlu M, Peters TE et al (2023) Nutritional quality of Onobrychis viciifolia (Scop.) Seeds: a potentially novel perennial pulse crop for human use. Legume Sci 5:e189. https://doi.org/10.1002/leg3.189
Deb SK, Edger PP, Pires JC, McKain MR (2023) Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. New Phytol 238:2284–2304. https://doi.org/10.1111/nph.18927
Article CAS PubMed Google Scholar
Dover GA (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165. https://doi.org/10.1016/0168-9525(86)90211-8
Duan L, Li S-J, Su C et al (2021) Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe Wisterieae. Mol Phylogenet Evol 163:107235. https://doi.org/10.1016/j.ympev.2021.107235
Garcia S, Garnatje T, Kovařík A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121:389–394. https://doi.org/10.1007/s00412-012-0368-7
Article CAS PubMed Google Scholar
Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885
Article CAS PubMed PubMed Central Google Scholar
Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865
Article CAS PubMed PubMed Central Google Scholar
He J, Tian D, Li X et al (2024) A chromosome-level genome assembly for Onobrychis viciifolia reveals gene copy number gain underlying enhanced proanthocyanidin biosynthesis. Commun Biol 7:1–13. https://doi.org/10.1038/s42003-023-05754-6
Heitkam T, Petrasch S, Zakrzewski F et al (2015) Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 23:791–806. https://doi.org/10.1007/s10577-015-9500-x
Article CAS PubMed Google Scholar
Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102. https://doi.org/10.1126/science.1062939
Article CAS PubMed Google Scholar
Ishii T, Juranić M, Maheshwari S et al (2020) Unequal contribution of two paralogous CENH3 variants in cowpea centromere function. Commun Biol 3:1–12. https://doi.org/10.1038/s42003-020-01507-x
Iwata A, Tek AL, Richard MMS et al (2013) Identification and characterization of functional centromeres of the common bean. Plant J 76:47–60. https://doi.org/10.1111/tpj.12269
Article CAS PubMed Google Scholar
Iwata-Otsubo A, Lin J-Y, Gill N, Jackson SA (2016) Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Res 24:197–216. https://doi.org/10.1007/s10577-015-9515-3
Article CAS PubMed PubMed Central Google Scholar
Jia K-H, Wang Z-X, Wang L et al (2022) SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol 235:801–809. https://doi.org/10.1111/nph.18173
Article CAS PubMed Google Scholar
Kempf K, Grieder C, Walter A et al (2015) Evidence and consequences of self-fertilisation in the predominantly outbreeding forage legume Onobrychis viciifolia. BMC Genet 16:117. https://doi.org/10.1186/s12863-015-0275-z
Article CAS PubMed PubMed Central Google Scholar
Kempf K, Mora-Ortiz M, Smith LMJ et al (2016) Characterization of novel SSR markers in diverse sainfoin (Onobrychis viciifolia) germplasm. BMC Genet 17:124. https://doi.org/10.1186/s12863-016-0431-0
Article CAS PubMed PubMed Central Google Scholar
Kong W, Wang Y, Zhang S et al (2023) Recent advances in assembly of complex plant genomes. Genom Proteom Bioinform 21:427–439. https://doi.org/10.1016/j.gpb.2023.04.004
Křivánková A, Kopecký D, Stočes Š et al (2017) Repetitive DNA: a versatile tool for karyotyping in Festuca pratensis huds. Cytogenet Genome Res 151:96–105. https://doi.org/10.1159/000462915
Article CAS PubMed Google Scholar
Liao X, Zhu W, Zhou J et al (2023) Repetitive DNA sequence detection and its role in the human genome. Commun Biol 6:1–21. https://doi.org/10.1038/s42003-023-05322-y
Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinform 12:164–171. https://doi.org/10.1016/j.gpb.2014.07.003
Naish M, Alonge M, Wlodzimierz P et al (2021) The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374:eabi7489. https://doi.org/10.1126/science.abi7489
Article CAS PubMed PubMed Central Google Scholar
Neumann P, Nouzová M, Macas J (2001) Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L). Genome 44:716–728
Article CAS PubMed Google Scholar
Novák P, Neumann P, Pech J et al (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793. https://doi.org/10.1093/bioinformatics/btt054
Comments (0)