Effects of Juglone and Curcumin Administration on Expression of FABP5 and FABP9 in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines

Kamei H., Koide T., Kojima T., Hashimoto Y., Hasegawa M. 1998. Inhibition of cell growth in culture by quinones. Cancer Biother. Radio. 13, 185–188.

CAS  Google Scholar 

Ji Y.-B., Qu Z.-Y., Zou X. 2011. Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway. Exp. Toxicol. Pathol. 63, 69–78.

Article  CAS  PubMed  Google Scholar 

Ammon H.P., Wahl M.A. 1991. Pharmacology of Curcuma longa. Planta Med. 57, 1–7.

Article  CAS  PubMed  Google Scholar 

Currie E., Schulze A., Zechner R., Walther T.C., Farese Jr. R.V. 2013. Cellular fatty acid metabolism and cancer. Cell Metab. 18 (2), 153–161.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto T., Kusakabe T., Watanabe K., Sugino T., Fukuda T., Nashimoto A., Honma K-I., Sato Y., Kimura H., Fujii H. 2004. Liver-type fatty acid-binding protein is highly expressed in intestinal metaplasia and in a subset of carcinomas of the stomach without association with the fatty acid synthase status in the carcinoma. Pathobiology. 71, 115–122.

Article  CAS  PubMed  Google Scholar 

Makowski L., Hotamisligil G.S. 2005. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr. Opin. Lipidol. 16, 543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawaguchi K., Kinameri A., Suzuki S., Senga S., Ke Y., Fujii H. 2016. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis. Biochem. J. 473, 449–461.

Article  CAS  PubMed  Google Scholar 

Fang L.Y., Wong T.Y., Chiang W.F., Chen Y.L. 2010. Fatty-acid-binding protein 5 promotes cell proliferation and invasion in oral squamous cell carcinoma. J. Oral Pathol. Med. 39, 342–348.

Article  CAS  PubMed  Google Scholar 

Levi L., Wang Z., Doud M.K., Hazen S.L., Noy N. 2015. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5. Nat. Commun. 6, 1–10.

Article  Google Scholar 

Senga S., Kobayashi N., Kawaguchi K., Ando A., Fujii H. 2018. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells. BBA, Mol. Cell Biol. 1863, 1057–1067.

CAS  Google Scholar 

Mashima T., Seimiya H., Tsuruo T. 2009. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Brit. J. Cancer. 100, 1369–1372.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menendez J.A., Lupu R. 2007. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer. 7, 763–777.

Article  CAS  PubMed  Google Scholar 

Oko R., Morales C.R. 1994. A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Dev. Biol. 166, 235–245.

Article  CAS  PubMed  Google Scholar 

Al Fayi M.S., Gou X., Forootan SS., Al-Jameel W., Bao Z., Rudland P.R., Cornford P.A., Hussain S.A., Ke Y. 2016. The increased expression of fatty acid-binding protein 9 in prostate cancer and its prognostic significance. Oncotarget. 7, 82783.

Article  PubMed  PubMed Central  Google Scholar 

Amiri M., Yousefnia S., Forootan FS., Peymani M., Ghaedi K., Esfahani MHN. 2018. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene. 676, 171–183.

Article  CAS  PubMed  Google Scholar 

Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z. 2017. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandrashekar D.S., Bashel B., Balasubramanya S.A.H., Creighton C.J., Ponce-Rodriguez I., Chakravarthi B.V., Varambally S. 2017. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 19, 649–658.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinkova-Kostova A.T., Talalay P. 2008. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 52, S128–S138.

PubMed  Google Scholar 

Pulido-Moran M., Moreno-Fernandez J., Ramirez-Tortosa C., Ramirez-Tortosa M. 2016. Curcumin and health. Molecules. 21, 264.

Article  PubMed  PubMed Central  Google Scholar 

Hu C., Niestroj M., Yuan D., Chang S., Chen J. 2015. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int. J. Nanomed. 10, 2065.

CAS  Google Scholar 

López-Lázaro M. 2008. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol. Nutr. Food Res. 52, S103–S127.

PubMed  Google Scholar 

Bahrami A., Majeed M., Sahebkar A. 2019. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition. Cell. Oncol. 42, 405–421.

Article  CAS  Google Scholar 

Shanmugam M.K., Rane G., Kanchi M.M., Arfuso F., Chinnathambi A., Zayed M., Alharbi S.A., Tan B.K., Kumar A.P., Sethi G. 2015. The multifaceted role of curcumin in cancer prevention and treatment. Molecules. 20, 2728–2769.

Article  PubMed  PubMed Central  Google Scholar 

Aggarwal B.B., Harikumar K.B. 2009. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell B. 41, 40–59.

Article  CAS  Google Scholar 

Anto R.J., Mukhopadhyay A., Denning K., Aggarwal B.B. 2002. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis. 23, 143–150.

Article  CAS  PubMed  Google Scholar 

Hayeshi R., Mutingwende I., Mavengere W., Masiyanise V., Mukanganyama S. 2007. The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. Food Chem. Toxicol. 45, 286–295.

Article  CAS  PubMed  Google Scholar 

Ruby A.J., Kuttan G., Babu K.D., Rajasekharan K., Kuttan R. 1995. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94, 79–83.

Article  CAS  PubMed  Google Scholar 

Thapliyal R., Maru G.B. 2001. Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem. Toxicol. 39, 541–547.

Article  CAS  PubMed  Google Scholar 

Taebi R., Mirzaiey MR., Mahmoodi M., Khoshdel A., Fahmidehkar MA., Mohammad-Sadeghipour M., Hajizadeh MR. 2020. The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2). Gene Rep. 18, 100581.

Article  Google Scholar 

Hu C., Li M., Guo T., Wang S., Huang W., Yang K., Liao Z., Wang J., Zhang F., Wang H. 2019. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine: Int. J. Phytother. Phytopharmacol. 58, 152740.

Article  CAS  Google Scholar 

Ji Y., Xin G., Qu Z., Zou X., Yu M. 2016. Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway. Genet. Mol. Res. 15 (3). https://doi.org/10.4238/gmr.15038785

Parasramka M.A., Gupta S.V. 2012. Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J. Oncol. 2012, 709739. https://doi.org/10.1155/2012/709739

Chang C.-C., Fu C.-F., Yang W.-T., Chen T.-Y., Hsu Y.-C. 2012. The cellular uptake and cytotoxic effect of curcuminoids on breast cancer cells. Taiwan. J. Obstet. Gyne. 51, 368–374.

Article  Google Scholar 

Zhao G., Wu M., Wang X., Du Z., Zhang G. 2017. Effect of FABP5 gene silencing on the proliferation, apoptosis and invasion of human gastric SGC-7901 cancer cells. Oncol. Lett. 14, 4772–4778.

Article  PubMed  PubMed Central  Google Scholar 

Jing C., Beesley C., Foster C.S., Chen H., Rudland P.S., West D.C., Fujii H., Smith P.H., Ke Y. 2001. Human cutaneous fatty acid-binding protein induces metastasis by up-regulating the expression of vascular endothelial growth factor gene in rat Rama 37 model cells. Cancer Res. 61, 4357–4364.

CAS  PubMed  Google Scholar 

Liu R-Z., Graham K., Glubrecht D.D., Germain D.R., Mackey J.R., Godbout R. 2011. Association of FABP5 expression with poor survival in triple-negative breast cancer: Implication for retinoic acid therapy. Am. J. Pathol. 178, 997–1008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levi L., Lobo G., Doud M.K., Von Lintig J., Seachrist D., Tochtrop G.P., Noy N. 2013. Genetic ablation of the fatty acid–binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Res. 73, 4770–4780.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S., Pramanik D., Mukherjee R., Campbell N.R., Elumalai S., De Wilde R.F., Hong S-M., Goggins M.G., De Jesus-Acosta A., Laheru D. 2012. Molecular determinants of retinoic acid sensitivity in pancreatic cancer. Clin. Cancer Res. 18, 280–289.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif