Dopamine Protects Neurons against Glutamate-Induced Excitotoxicity

Winklhofer K.F., Haass C. 2010. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta. 1802 (1), 29–44. https://doi.org/10.1016/j.bbadis.2009.08.013

Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Biophys. Mol. Biol. 86 (2), 279–351. https://doi.org/10.1016/j.pbiomolbio.2003.10.002

Article  CAS  Google Scholar 

Meldrum B.S. 2000. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr. 130 (4S), 1007S–1015S. https://doi.org/10.1093/jn/130.4.1007S

Article  CAS  PubMed  Google Scholar 

Gasiorowska A., Wydrych M., Drapich P., Zadrozny M., Steczkowska M., Niewiadomski W., Niewiadomska G. 2021. The biology and pathobiology of glutamatergic, cholinergic, and dopaminergic signaling in the aging brain. Front Aging Neurosci. 13, 654931. https://doi.org/10.3389/fnagi.2021.654931

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M., Wong A.H., Liu F. 2012. Interactions between NMDA and dopamine receptors: A potential therapeutic target. Brain Research. 1476, 154–163. https://doi.org/10.1016/j.brainres.2012.03.029

Article  CAS  PubMed  Google Scholar 

Berezhnov A.V., Kononov A.V., Fedotova E.I., Zinchenko V.P. 2011. A Method for detection and characterization of GABA(A) receptor ligands using calcium-sensitive fluorescent probes. Biophysics. 56 (4), 660–667.

Article  Google Scholar 

Grynkiewicz G., Poenie M., Tsien R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260 (6), 3440–3450.

Article  CAS  PubMed  Google Scholar 

Berezhnov A.V., Kononov A.V., Fedotova E.I., Zinchenko V.P. 2013. Application of imaging technique for characterization of ionotropic glutamate receptor ligands in cultured neurons. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 7 (3), 213–221.

Google Scholar 

Kahlert S., Zündorf G., Reiser G. 2008. Detection of de- and hyperpolarization of mitochondria of cultured astrocytes and neurons by the cationic fluorescent dye rhodamine 123. J. Neurosci. Methods. 171 (1), 87–92. https://doi.org/10.1016/j.jneumeth.2008.02.0157

Article  CAS  PubMed  Google Scholar 

Vaarmann A., Kovac S., Holmström K.M., Gandhi S., Abramov A.Y. 2013. Dopamine protects neurons against glutamate-induced excitotoxicity. Cell Death Dis. 4 (1), e455. https://doi.org/10.1038/cddis.2012.194.9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira I.L., Duarte C.B., Carvalho A.P. 1996. Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death. Eur. J. Pharmacol. 302 (1–3), 153–162. https://doi.org/10.1016/0014-2999(96)00044-1

Article  CAS  PubMed  Google Scholar 

Castro N.G., de Mello M.C., de Mello F.G., Aracava Y. 1999. Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393. Br. J. Pharmacol. 126 (8), 1847–1855. https://doi.org/10.1038/sj.bjp.0702479

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau C.G., Takeuchi K., Rodenas-Ruano A., Takayasu Y., Murphy J., Bennett M.V., Zukin R.S. 2009. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem. Soc. Trans. 37 (Pt 6), 1369–1374. https://doi.org/10.1042/BST0371369

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berezhnov A.V., Fedotova E.I., Sergeev A.I., Teplov I.Y., Abramov A.Y. 2021. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium. 94, 102359. https://doi.org/10.1016/j.ceca.2021.102359

Article  CAS  PubMed  Google Scholar 

Cui C., Xu M., Atzori M. 2006.Voltage-dependent block of N-methyl-D-aspartate receptors by dopamine D1 receptor ligands. Mol. Pharmacol. 70 (5), 1761–1770. https://doi.org/10.1124/mol.106.028332

Article  CAS  PubMed  Google Scholar 

Masuko T., Suzuki I., Kizawa Y., Kusama-Eguchi K., Watanabe K., Kashiwagi K., Igarashi K., Kusama T. 2004. Monoamines directly inhibit N-methyl-D-aspartate receptors expressed in Xenopus oocytes in a voltage-dependent manner. Neurosci Lett. 371 (1), 30–33. https://doi.org/10.1016/j.neulet.2004.08.030

Article  CAS  PubMed  Google Scholar 

Uchimura N., Higashi H., Nishi S. 1986. Hyperpolarizing and depolarizing actions of dopamine via D-1 and D-2 receptors on nucleus accumbens neurons. Brain Res. 375 (2), 368–372. https://doi.org/10.1016/0006-8993(86)90760-2

Article  CAS  PubMed  Google Scholar 

Mangiavacchi S., Wolf M.E. 2004. D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J. Neurochem. 88 (5), 1261–1271. https://doi.org/10.1046/j.1471-4159.2003.02248.x

Article  CAS  PubMed  Google Scholar 

Sun X., Zhao Y., Wolf M.E. 2005. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J. Neurosci. 25 (32), 7342–7351. https://doi.org/10.1523/JNEUROSCI.4603-04.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amano T., Ujihara H. Matsubayashi H., Sasa M., Yokota T., Tamura Y., Akaike A. 1994. Dopamine-induced protection of striatal neurons against kainate receptor-mediated glutamate cytotoxicity in vitro. Brain Res. 655 (1–2), 61–69. https://doi.org/10.1016/0006-8993(94)91597-0

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif