Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses

McMahon H.T., Gallop J.L. 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature. 438, 590–596.

Article  CAS  Google Scholar 

Zimmerberg J., Kozlov M.M. 2006. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19.

Article  CAS  Google Scholar 

Schekman R., Orci L. 1996. Coat proteins and vesicle budding. Science 271, 1526–1533.

Article  CAS  Google Scholar 

Bremser M., Nickel W., Schweikert M., Ravazzola M., Amherdt M., Hughes C.A., Söllner T.H., Rothman J.E., Wieland F.T. 1999. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell. 96, 495–506.

Article  CAS  Google Scholar 

Chernomordik L., Kozlov M.M., Zimmerberg J. 1995. Lipids in biological membrane fusion. J. Membr. Biol. 146, 1–14.

Article  CAS  Google Scholar 

Melikyan G.B., Abidor I.G., Chernomordik L.V., Chailakhyan L.M. 1982. Electrically stimulated fusion and fission of bilayer lipid membranes. Dokl. Acad. Sci. USSR (Rus.). 263, 1009–1012.

CAS  Google Scholar 

Kozlov M.M., Markin V.S. 1983. Possible mechanism of membrane fusion. Biofizika (Rus.). 28, 242–247.

CAS  Google Scholar 

Chernomordik L.V., Kozlov M.M., Melikyan G.B., Abidor I.G., Markin V.S., Chizmadzhev Yu.A. 1985. The shape of lipid molecules and monolayer membrane fusion. Biochim. Biophys. Acta BBA – Biomembr. 812, 643–655.

Article  CAS  Google Scholar 

Wang T., Li L., Hong W. 2017. SNARE proteins in membrane trafficking. Traffic. 18, 767–775.

Article  CAS  Google Scholar 

Jahn R., Scheller R.H. 2006. SNAREs – engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643.

Article  CAS  Google Scholar 

Skehel J.J., Wiley D.C. 2000. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569.

Article  CAS  Google Scholar 

Chernomordik L.V., Frolov V.A., Leikina E., Bronk P., Zimmerberg J. 1998. The pathway of membrane fusion catalyzed by influenza hemagglutinin: Restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369–1382.

Article  CAS  Google Scholar 

Lee K.K. 2010. Architecture of a nascent viral fusion pore. EMBO J. 29, 1299–1311.

Article  CAS  Google Scholar 

Calder L.J., Wasilewski S., Berriman J.A., Rosenthal P.B. 2010. Structural organization of a filamentous influenza A virus. Proc. Natl. Acad. Sci. USA. 107, 10685–10690.

Article  CAS  Google Scholar 

Ge P., Tsao J., Schein S., Green T.J., Luo M., Zhou Z.H. 2010. Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science. 327, 689–693.

Article  CAS  Google Scholar 

Liljeroos L., Huiskonen J.T., Ora A., Susi P., Butcher S.J. 2011. Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proc. Natl. Acad. Sci. USA. 108, 18085–18090.

Article  CAS  Google Scholar 

Chizmadzhev Y.A. 2004. The mechanisms of lipid–protein rearrangements during viral infection. Bioelectrochemistry. 63, 129–136.

Article  CAS  Google Scholar 

Pettersson R.F. 1991. Protein localization and virus assembly at intracellular membranes. In: Protein traffic in eukaryotic cells. Vol. 170. Current topics in microbiology and immunology. Ed. Compans R.W. Berlin, Heidelberg: Springer, p. 67–106.

White J., Kielian M., Helenius A. 1983. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 16, 151–195.

Article  CAS  Google Scholar 

Kielian M., Rey F.A. 2006. Virus membrane-fusion proteins: More than one way to make a hairpin. Nat. Rev. Microbiol. 4, 67–76.

Article  CAS  Google Scholar 

Colman P.M., Lawrence M.C. 2003. The structural biology of type I viral membrane fusion. Nat. Rev. Mol. Cell Biol. 4, 309–319.

Article  CAS  Google Scholar 

Poehlmann S., Simmons G. 2013. Viral entry into host cells. New York: Springer Science.

Book  Google Scholar 

Südhof T.C. 2013. Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron. 80, 675–690.

Article  Google Scholar 

Hernandez L.D., Hoffman L.R., Wolfsberg T.G., White J.M. 1996. Virus–cell and cell–cell fusion. Annu. Rev. Cell Dev. Biol. 12, 627–661.

Article  CAS  Google Scholar 

Duelli D., Lazebnik Y. 2003. Cell fusion: A hidden enemy? Cancer Cell. 3, 445–448.

Article  CAS  Google Scholar 

Chen E.H. 2005. Unveiling the mechanisms of cell–cell fusion. Science. 308, 369–373.

Article  CAS  Google Scholar 

Chen E.H., Grote E., Mohler W., Vignery A. 2007. Cell–cell fusion. FEBS Lett. 581, 2181–2193.

Article  CAS  Google Scholar 

White J. 1992. Membrane fusion. Science. 258, 917–924.

Article  CAS  Google Scholar 

Wickner W., Schekman R. 2008. Membrane fusion. Nat. Struct. Mol. Biol. 15, 658–664.

Article  CAS  Google Scholar 

Brukman N.G., Uygur B., Podbilewicz B., Chernomordik L.V. 2019. How cells fuse. J. Cell Biol. 218, 1436–1451.

Article  CAS  Google Scholar 

Harrison S.C. 2015. Viral membrane fusion. Virology. 479–480, 498–507.

Article  Google Scholar 

Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2001. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA. 98, 7235–7240.

Article  CAS  Google Scholar 

Lentz B.R. 2007. PEG as a tool to gain insight into membrane fusion. Eur. Biophys. J. 36, 315–326.

Article  CAS  Google Scholar 

Hong J., Yang H., Pang D., Wei L., Deng C. 2018. Effects of mono- and di-valent metal cations on the morphology of lipid vesicles. Chem. Phys. Lipids. 217, 19–28.

Article  CAS  Google Scholar 

White J.M., Delos S.E., Brecher M., Schornberg K. 2008. Structures and mechanisms of viral membrane fusion proteins: Multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 43, 189–219.

Article  CAS  Google Scholar 

Benhaim M.A., Lee K.K. 2020. New biophysical approaches reveal the dynamics and mechanics of type I viral fusion machinery and their interplay with membranes. Viruses. 12, 413.

Article  CAS  Google Scholar 

Chlanda P., Mekhedov E., Waters H., Schwartz C.L., Fischer E.R., Ryham R.J., Cohen F.S., Blank P.S., Zimmerberg J. 2016. The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes. Nat. Microbiol. 1, 16050.

Article  CAS  Google Scholar 

Sammalkorpi M., Lazaridis T. 2007. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. Biochim. Biophys. Acta BBA – Biomembr. 1768, 30–38.

Article  CAS  Google Scholar 

Qiang W., Sun Y., Weliky D.P. 2009. A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide. Proc. Natl. Acad. Sci. USA. 106, 15314–15319.

Article  CAS  Google Scholar 

Frolov V.A., Cho M.-S., Bronk P., Reese T.S., Zimmerberg J. 2000. Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic. 1, 622–630.

Article  CAS  Google Scholar 

Markosyan R.M., Cohen F.S., Melikyan G.B. 2000. The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. Mol. Biol. Cell. 11, 1143–1152.

Article  CAS  Google Scholar 

Leikin S.L., Kozlov M.M., Chernomordik L.V., Markin V.S., Chizmadzhev Y.A. 1987. Membrane fusion: Overcoming of the hydration barrier and local restructuring. J. Theor. Biol. 129, 411–425.

Article  CAS  Google Scholar 

Helm C., Israelachvili J., McGuiggan P. 1989. Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science. 246, 919–922.

Article  CAS  Google Scholar 

Kozlovsky Y., Efrat A., Siegel D.A., Kozlov M.M. 2004. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys. J. 87, 2508–2521.

Article  CAS  Google Scholar 

Kozlovsky Y., Chernomordik L.V., Kozlov M.M. 2002. Lipid intermediates in membrane fusion: Formation, structure, and decay of hemifusion diaphragm. Biophys. J. 83, 2634–2651.

Article  CAS  Google Scholar 

Akimov S., Polynkin M.A., Jiménez-Munguía I., Pavlov K.V., Batishchev O.V. 2018. Phosphatidylcholine membrane fusion is pH-dependent. Int. J. Mol. Sci. 19, 1358.

Article  Google Scholar 

留言 (0)

沒有登入
gif