The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases

Piller C. 2022. Blots on a field? Science. 377, 358–363.

Article  CAS  Google Scholar 

Lobello K., Ryan J.M., Liu E., Rippon G., Black R. 2012. Targeting beta amyloid: A clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int. J. Alzheimerx2019s Dis. 2012, e628070.

Schengrund C.-L. 2010. Lipid rafts: Keys to neurodegeneration. Brain Res. Bull. 82, 7–17.

Article  CAS  Google Scholar 

Mollinedo F., Gajate C. 2015. Lipid rafts as major platforms for signaling regulation in cancer. Adv. Biol. Regul. 57, 130–146.

Article  CAS  Google Scholar 

Munro S. 2003. Lipid rafts: Elusive or illusive? Cell. 115, 377–388.

Article  CAS  Google Scholar 

Levental I., Levental K.R., Heberle F.A. 2020. Lipid rafts: Controversies resolved, mysteries remain. Trends Cell Biol. 30, 341–353.

Article  CAS  Google Scholar 

Ferrara A., Barrett-Connor E., Shan J. 1997. Total, LDL, and HDL cholesterol decrease with age in older men and women. The Rancho Bernardo Study 1990–1994. Circulation. 96, 37–43.

Article  CAS  Google Scholar 

Berns M.A., de Vries J.H., Katan M.B. 1988. Determinants of the increase of serum cholesterol with age: A longitudinal study. Int. J. Epidemiol. 17, 789–796.

Article  CAS  Google Scholar 

Shiomi M., Ito T., Fujioka T., Tsujita Y. 2000. Age-associated decrease in plasma cholesterol and changes in cholesterol metabolism in homozygous Watanabe heritable hyperlipidemic rabbits. Metabolism. 49, 552–556.

Article  CAS  Google Scholar 

van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.

Article  CAS  Google Scholar 

Simons K., van Meer G. 1988. Lipid sorting in epithelial cells. Biochemistry. 27, 6197–6202.

Article  CAS  Google Scholar 

Lagerholm B.C., Weinreb G.E., Jacobson K., Thompson N.L. 2005. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336.

Article  CAS  Google Scholar 

Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.

Article  CAS  Google Scholar 

Anderson R.G.W., Jacobson K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 296, 1821–1825.

Article  CAS  Google Scholar 

Pike L.J. 2006. Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598.

Article  CAS  Google Scholar 

Epand R.M. 2008. Proteins and cholesterol-rich domains. Biochim. Biophys. Acta. 1778, 1576–1582.

Article  CAS  Google Scholar 

Mañes S., Mira E., Gómez-Moutón C., Lacalle R.A., Keller P., Labrador J.P., Martínez-A C. 1999. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 18, 6211–6220.

Article  Google Scholar 

Aman M.J., Ravichandran K.S. 2000. A requirement for lipid rafts in B cell receptor induced Ca2+ flux. Curr. Biol. 10, 393–396. https://doi.org/10.1016/s0960-9822(00)00415-2

Article  CAS  Google Scholar 

Lamaze C., Dujeancourt A., Baba T., Lo C.G., Benmerah A., Dautry-Varsat A. 2001. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell. 7, 661–671.

Article  CAS  Google Scholar 

Jahn R., Scheller R.H. 2006. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643.

Article  CAS  Google Scholar 

Salaün C., Gould G.W., Chamberlain L.H. 2005. Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells. J. Biol. Chem. 280, 19 449–19 453.

Article  Google Scholar 

Suzuki T., Zhang J., Miyazawa S., Liu Q., Farzan M.R., Yao W.-D. 2011. Association of membrane rafts and postsynaptic density: Proteomics, biochemical, and ultrastructural analyses. J. Neurochem. 119, 64–77.

Article  CAS  Google Scholar 

Suzuki S., Numakawa T., Shimazu K., Koshimizu H., Hara T., Hatanaka H., Mei L., Lu B., Kojima M. 2004. BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: Roles in synaptic modulation. J. Cell Biol. 167, 1205–1215.

Article  CAS  Google Scholar 

Pereira D.B., Chao M.V. 2007. The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts. J. Neurosci. Off. J. Soc. Neurosci. 27, 4859–4869.

Article  CAS  Google Scholar 

Pryor S., McCaffrey G., Young L.R., Grimes M.L. 2012. NGF causes TrkA to specifically attract microtubules to lipid rafts. PloS One. 7, e35163.

Article  CAS  Google Scholar 

Colin J., Gregory-Pauron L., Lanhers M.-C., Claudepierre T., Corbier C., Yen F.T., Malaplate-Armand C., Oster T. 2016. Membrane raft domains and remodeling in aging brain. Biochimie. 130, 178–187.

Article  CAS  Google Scholar 

Stier A., Sackmann E. 1973. Spin labels as enzyme substrates heterogeneous lipid distribution in liver microsomal membranes. Biochim. Biophys. Acta BBA – Biomembr. 311, 400–408.

Article  CAS  Google Scholar 

Karnovsky M.J., Kleinfeld A.M., Hoover R.L., Dawidowicz E.A., McIntyre D.E., Salzman E.A., Klausner R.D. 1982. Lipid domains in membranes. Ann. N. Y. Acad. Sci. 401, 61–74. https://doi.org/10.1083/jcb.94.1.1

Article  CAS  Google Scholar 

Estep T.N., Mountcastle D.B., Barenholz Y., Biltonen R.L., Thompson T.E. 1979. Thermal behavior of synthetic sphingomyelin-cholesterol dispersions. Biochemistry. 18, 2112–2117.

Article  CAS  Google Scholar 

Goodsaid-Zalduondo F., Rintoul D., Carlson J., Hansel W. 1982. Luteolysis-induced changes in phase composition and fluidity of bovine luteal cell membranes. Proc. Natl. Acad. Sci. USA. 79 (14), 4332–4336. https://doi.org/10.1073/pnas.79.14.4332

Article  CAS  Google Scholar 

Samsonov A.V., Mihalyov I., Cohen F.S. 2001. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81, 1486–1500.

Article  CAS  Google Scholar 

Baumgart T., Hess S.T., Webb W.W. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425, 821–824.

Article  CAS  Google Scholar 

Veatch S.L., Cicuta P., Sengupta P., Honerkamp-Smith A., Holowka D., Baird B. 2008. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293.

Article  CAS  Google Scholar 

Veatch S.L., Keller S.L. 2005. Seeing spots: Complex phase behavior in simple membranes. Biochim. Biophys. Acta. 1746, 172–185.

Article  CAS  Google Scholar 

Gil T., Sabra M.C., Ipsen J.H., Mouritsen O.G. 1997. Wetting and capillary condensation as means of protein organization in membranes. Biophys. J. 73, 1728–1741.

Article  CAS  Google Scholar 

Akimov S.A., Frolov V.A.J., Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2008. Domain formation in membranes caused by lipid wetting of protein. Phys. Rev. E. 77, 051901.

Article  Google Scholar 

Nichols B. 2003. Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 116, 4707–4714.

Article  CAS  Google Scholar 

Allen J.A., Halverson-Tamboli R.A., Rasenick M.M. 2007. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140.

Article  CAS  Google Scholar 

Scheiffele P., Rietveld A., Wilk T., Simons K. 1999. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044.

Article  CAS  Google Scholar 

Gniadecki R., Poumay Y. 2009. Lipid rafts and keratinocyte apoptosis: Regulation death receptors and Akt. Open Dermatol. J. 3, 163–165.

Article  CAS  Google Scholar 

Campbell S.M., Crowe S.M., Mak J. 2001. Lipid rafts and HIV-1: From viral entry to assembly of progeny virions. J. Clin. Virol. 22, 217–227.

Article  CAS  Google Scholar 

Suomalainen M. 2002. Lipid rafts and assembly of enveloped viruses. Traffic. 3, 705–709.

Article  CAS  Google Scholar 

Simons K., Toomre D. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

Article  CAS  Google Scholar 

Baird B., Sheets E.D., Holowka D. 1999. How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys. Chem. 82, 109–119.

Article  CAS  Google Scholar 

Hong S., Huo H., Xu J., Liao K. 2004. Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae. Cell Death Differ. 11, 714–723.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif