Synthesis and characterization of a copper oxide/bismuth molybdate heterostructure for ciprofloxacin degradation via photoelectrocatalysis

Godoy, M., & Sánchez, J. (2020). Antibiotics as emerging pollutants in water and its treatment. In K. Varaprasad, V. Kanikireddy, & R. Sadiku (Eds.), Antibiotic materials in healthcare (pp. 221–230). Academic.

Chapter  Google Scholar 

Méndez, E., González-Fuentes, M. A., Rebollar-Perez, G., Méndez-Albores, A., & Torres, E. (2017). Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones. Journal of Environmental Science and Health, Part A, 52(3), 235–253. https://doi.org/10.1080/10934529.2016.1253391

Article  CAS  Google Scholar 

Makkaew, P., Kongprajug, A., Chyerochana, N., Sresung, M., Precha, N., Mongkolsuk, S., & Sirikanchana, K. (2021). Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters. International Journal of Hygiene and Environmental Health, 238, 113859. https://doi.org/10.1016/j.ijheh.2021.113859

Article  PubMed  CAS  Google Scholar 

Ruotong, X., Jiayi, X., Ruisi, C., Yulin, T., & Yongji, Z. (2024). Effect of antibiotics and antibiotic by-products on the chlorine resistance of biofilms in drinking water distribution systems. Journal of Water Process Engineering, 66, 105987. https://doi.org/10.1016/j.jwpe.2024.105987

Article  Google Scholar 

Sivalingam, P., Sabatino, R., Sbaffi, T., Corno, G., Fontaneto, D., Borgomaneiro, G., Rogora, M., Crotti, E., Mapelli, F., Borin, S., Pilar, A. L., Eckert, E. M., & Di Cesare, A. (2024). Anthropogenic pollution may enhance natural transformation in water, favouring the spread of antibiotic resistance genes. Journal of Hazardous Materials, 475, 134885. https://doi.org/10.1016/j.jhazmat.2024.134885

Article  PubMed  CAS  Google Scholar 

Bhatt, S., & Chatterjee, S. (2022). Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation—A comprehensive review. Environmental Pollution, 315, 120440. https://doi.org/10.1016/j.envpol.2022.120440

Article  PubMed  CAS  Google Scholar 

Al-Buriahi, A. K., Al-shaibani, M. M., Mohamed, R. M. S. R., Al-Gheethi, A. A., Sharma, A., & Ismail, N. (2022). Ciprofloxacin removal from non-clinical environment: A critical review of current methods and future trend prospects. Journal of Japan Society on Water Environment, 47, 102725. https://doi.org/10.1016/j.jwpe.2022.102725

Article  Google Scholar 

Safdari, M., Emamjomeh, M. M., & Rezaee, A. (2024). Ciprofloxacin removal as an emerging contaminant using electrochemical advanced reduction process: Mechanism, degradation pathway and reaction kinetic. Journal of Industrial and Engineering Chemistry, 145, 441–451. https://doi.org/10.1016/j.jiec.2024.10.039

Article  CAS  Google Scholar 

Priyanka, B., Pal, S., & Singh, M. B. (2024). Superior adsorptive removal of ciprofloxacin by graphene oxide modified Ni–Al layered double hydroxide composites. Journal of Alloys and Compounds, 976, 173220. https://doi.org/10.1016/j.jallcom.2023.173220

Article  CAS  Google Scholar 

Yang, M., He, J., He, J., & Cao, J. (2024). Removal of tetracycline and ciprofloxacin from aqueous solutions using magnetic copper ferrite nanoparticles. Journal of Science: Advanced Materials and Devices, 9(2), 100717. https://doi.org/10.1016/j.jsamd.2024.100717

Article  CAS  Google Scholar 

Ananthi, P., Hemkumar, K., Manikandan, S., & Pius, A. (2024). Cellulose acetate based-membrane supported by metal-organic frameworks for the removal of diclofenac and ciprofloxacin from polluted water. Groundwater for Sustainable Development, 26, 101308. https://doi.org/10.1016/j.gsd.2024.101308

Article  Google Scholar 

Chu, Y., Chen, X., Li, S., Li, X., Ren, N., & Ho, S. H. (2024). Novel insights into revealing the intrinsic degradation mechanism of ciprofloxacin by Chlorella sorokiniana: Removal efficiency, pathways and metabolism. Chemical Engineering Journal, 500, 157015. https://doi.org/10.1016/j.cej.2024.157015

Article  CAS  Google Scholar 

Ferfera-Harrar, H., Sadi, A., & Benhalima, T. (2024). Magnetic recyclable carboxymethyl cellulose/gelatin/citrate@Fe3O4 photo-nanocomposite beads for ciprofloxacin removal via hybrid adsorption/photocatalysis process under solar light as a renewable energy source. International Journal of Biological Macromolecules, 282(2), 136854. https://doi.org/10.1016/j.ijbiomac.2024.136854

Article  PubMed  CAS  Google Scholar 

Feitosa, M. H. A., Santos, A. M., Wong, A., Moraes, C. A. F., Grosseli, G. M., Nascimento, O. R., Fadini, P. S., & Moraes, F. C. (2024). Photoelectrocatalytic removal of antibiotic ciprofloxacin using a photoanode based on Z-scheme heterojunction. Chemical Engineering Journal, 493, 152291. https://doi.org/10.1016/j.cej.2024.152291

Article  CAS  Google Scholar 

Alulema-Pullupaxi, P., Espinoza-Montero, P. J., Sigcha-Pallo, C., Vargas, R., Fernández, L., Peralta-Hernández, J. M., & Paz, J. L. (2021). Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. Chemosphere, 281, 130821. https://doi.org/10.1016/j.chemosphere.2021.130821

Article  PubMed  CAS  Google Scholar 

Alulema-Pullupaxi, P., Fernández, L., Debut, A., Santacruz, C. P., Villacis, W., Fierro, C., & Espinoza-Montero, P. J. (2021). Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode. Chemosphere, 278, 130488. https://doi.org/10.1016/j.chemosphere.2021.130488

Article  PubMed  CAS  Google Scholar 

Jian, L., Wang, C., Li, M., Yan, J., Wang, P., Song, Y., Wang, G., Zhang, X., Liu, X., Fu, Y., & Ma, H. (2023). Constructing outstanding 1D/2D Co3O4/NiMnO3 heterostructure to promote the PEC efficiency for water pollution remediation. Journal of Alloys and Compounds, 947, 169411. https://doi.org/10.1016/j.jallcom.2023.169411

Article  CAS  Google Scholar 

Fernandez-Ibanez, P., McMichael, S., Rioja Cabanillas, A., Alkharabsheh, S., Moranchel, A. T., & Byrne, J. A. (2021). New trends on photoelectrocatalysis (PEC): Nanomaterials, wastewater treatment and hydrogen generation. Current Opinion in Chemical Engineering, 34, 100725. https://doi.org/10.1016/j.coche.2021.100725

Article  Google Scholar 

Liu, Y., Hu, S., Zhang, X., & Sun, S. (2023). P-n heterojunction constructed by γ-Fe2O3 covering CuO with CuFe2O4 interface for visible-light-driven photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 639, 464–471. https://doi.org/10.1016/j.jcis.2023.02.042

Article  PubMed  CAS  Google Scholar 

Zhu, C., Li, C., Miao, X., Zhao, L., Wang, Z., & Delaunay, J. J. (2020). Photoelectrochemical water oxidation performance promoted by a cupric oxide-hematite heterojunction photoanode. International Journal of Hydrogen Energy, 45(58), 33102–33110. https://doi.org/10.1016/j.ijhydene.2020.09.091

Article  CAS  Google Scholar 

Chatterjee, A., Ravindra, A. V., Kiran Kumar, G., & Rajesh, C. (2022). Improvement in the light conversion efficiency of silicon solar cell by spin coating of CuO, ZnO nanoparticles and CuO/ZnO mixed metal nanocomposite material. Journal of the Indian Chemical Society, 99(9), 100653. https://doi.org/10.1016/j.jics.2022.100653

Article  CAS  Google Scholar 

Khalifa, M. A., Shen, L., Zheng, J., & Xu, C. (2021). Boosting light harvesting and charge separation of WO3via coupling with Cu2O/CuO towards highly efficient tandem photoanodes. RSC Advances, 11(22), 13513–13520. https://doi.org/10.1039/D1RA00417D

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dong, S., Liu, X., Tian, G., Wang, Y., Jin, G., Zhao, Y., Sun, J., & Fan, M. (2022). Surface oxygen vacancies modified Bi2MoO6 double-layer spheres: Enhanced visible LED light photocatalytic activity for ciprofloxacin degradation. Journal of Alloys and Compounds, 892, 162217. https://doi.org/10.1016/j.jallcom.2021.162217

Article  CAS  Google Scholar 

Zargazi, M., & Entezari, M. H. (2023). Surface engineering of Bi2MoO6 as an efficient photoanode in tandem water splitting system by pulsed sonoelectrodeposition. Journal of Photochemistry and Photobiology, A: Chemistry, 441, 114692. https://doi.org/10.1016/j.jphotochem.2023.114692

Article  CAS  Google Scholar 

Wu, S., Yi, B., & Lan, D. (2023). Fabrication of Bi2MoO6/g-C3N4 visible-light driven photocatalyst for enhanced tetracycline degradation. Journal of Photochemistry and Photobiology, A: Chemistry, 444, 115013. https://doi.org/10.1016/j.jphotochem.2023.115013

Article  CAS  Google Scholar 

Xue, J., Li, F., Li, S., Zhang, J., & Bi, Q. (2022). Preparation and properties of bismuth molybdate (Bi2MoO6) as photoanode for methylene blue degradation. International Journal of Electrochemical Science, 17(1), 220136. https://doi.org/10.20964/2022.01.29

Article  CAS  Google Scholar 

Chen, R., Yang, H., Jia, Y., Zhang, Y., Nan, C., Gao, F., Yang, J., & Gao, X. (2024). Tuning oxygen vacancies on Bi2MoO6 surface for efficient electrocatalytic N2 reduction reaction. Electrochimica Acta, 490, 144266. https://doi.org/10.1016/j.electacta.2024.144266

Article  CAS  Google Scholar 

Feng, F., Mitoraj, D., Gong, R., Gao, D., Elnagar, M. M., Liu, R., Beranek, R., & Streb, C. (2024). High-performance BiVO4 photoanodes: Elucidating the combined effects of Mo-doping and modification with cobalt polyoxometalate. Materials Advances, 5(11), 4932–4944. https://doi.org/10.1039/D4MA00089G

Article  CAS  Google Scholar 

Wang, G., Lv, S., Shen, Y., Li, W., Lin, L., & Li, Z. (2024). Advancements in heterojunction, cocatalyst, defect and morphology engineering of semiconductor oxide photocatalysts. Journal of Materiomics, 10(2), 315–338. https://doi.org/10.1016/j.jmat.2023.05.014

Article 

Comments (0)

No login
gif