Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal Of Food Science And Technology, 55, 2833–2849.
Article PubMed PubMed Central CAS Google Scholar
Tejada Alvarado, J. J., Meléndez Mori, J. B., Vilca Valqui, N. C., Neri, J. C., Ayala Tocto, R. Y., Huaman Huaman, E., Gill, E. R. A., Oliva, M., & Goas, M. (2023). Impact of wild solanaceae rootstocks on morphological and physiological response, yield, and fruit quality of tomato (Solanum lycopersicum L.) grown under deficit irrigation conditions. Heliyon, 9(1), e12755–e127515. https://doi.org/10.1016/J.HELIYON.2022.E12755
Causse, M., Zhao, J., Diouf, I., Qang, J., Lefebvre, V., Caromel, B., G’enard, M., & Bertin, N. (2020). Genomic designing for climate-smart tomato. Genomic designing of climatesmart vegetable crops. https://doi.org/10.1007/978-3-319-97415-6
Zhao, Y., Li, L., Gao, S., Wang, S., Li, X., & Xiong, X. (2023). Postharvest storage properties and quality kinetic models of cherry tomatoes treated by high-voltage electrostatic fields. LWT Food Science and Technology, 176, Article 114497. https://doi.org/10.1016/J.LWT.2023.114497
Lim, J. S., & Ha, J. W. (2021). Growth-inhibitory effect of X-ray irradiation on gram-negative and gram-positive pathogens in apple, orange, and tomato juices. Food and Bioprocess Technology, 14, 1909–1919. https://doi.org/10.1007/s11947-021-02686-z
Charles, M. T., Makhlouf, J., & Arul, J. (2008). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: II Modification of fruit surface and changes in fungal colonization. Postharvest Biology and Technology, 47(1), 21–26. https://doi.org/10.1016/j.postharvbio.2007.05.014
Pombo, M. A., Rosli, H. G., Martínez, G. A., & Civello, P. M. (2011). UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria × ananassa Duch.). Postharvest Biology and Technology, 59(1), 94–102. https://doi.org/10.1016/j.postharvbio.2010.08.003
Bravo, S., García-alonso, J., Martín-pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I., & Periago, M. J. (2012). The influence of post- harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49(1), 296–302. https://doi.org/10.1016/j.foodres.2012.07.018
Abdipour, M., Hosseinifarahi, M., & Naseri, N. (2019). Combination method of UV-B and UV-C prevents post-harvest decay and improves organoleptic quality of peach fruit. Scientia Horticulturae. https://doi.org/10.1016/j.scienta.2019.108564
Adetuyi, F. O., Karigidi, K. O., & Akintimehin, E. S. (2020). Effect of postharvest UV-C treatments on the bioactive components, antioxidant and inhibitory properties of clerodendrum volubile leaves. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2018.03.005
Tiecher, A., Depaula, L. A., Chaves, F. C., & Rombaldi, C. V. (2013). UV-C effect on ethylene, polyamines and the regulation of tomato fruit ripening. Postharvest Biology and Technology, 86, 230–239. https://doi.org/10.1016/j.postharvbio.2013.07.016
Obande, M. A., Tucker, G. A., & Shama, G. (2011). Effect of preharvest UV-C treatment of tomatoes (Solanum lycopersicon Mill.) on ripening and pathogen resistance. Postharvest Biology and Technology, 62(2), 188–192. https://doi.org/10.1016/j.postharvbio.2011.06.001
Zaffina, S., Camisa, V., Lembo, M., Vinci, M. R., Tucci, M. G., Borra, M., Napolitano, A., & Cannatà, V. (2012). Accidental exposure to UV radiation produced by germicidal lamp: Case report and risk assessment. Photo-chem Photobiol, 88(4), 1001–1004. https://doi.org/10.1111/j.1751-1097.2012.01151.x
Pfeifer, G. P., & Besaratinia, A. (2012). UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochemical and Photobiological Sciences, 11(1), 90–97. https://doi.org/10.1039/c1pp05144j
Article PubMed CAS Google Scholar
Narita, K., Asano, K., Morimoto, Y., Igarash, T., & Nakane, A. (2018). Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS ONE, 13(7), e0201259. https://doi.org/10.1371/journal.pone.0201259
Article PubMed PubMed Central CAS Google Scholar
Welch, D., Buonanno, M., Buchan, A. G., Yang, L., Atkinson, K. D., Shuryak, I., & Brenner, D. J. (2022). Inactivation rates for airborne human coronavirus by low doses of 222 nm far-UVC radiation. Viruses, 14(4), 684.
Article PubMed PubMed Central CAS Google Scholar
BarnardI, R. M., Eadie, E., & Wood, K. (2020). Further evidence that far-UVC for disinfection is unlikely to cause erythema or pre-mutagenic DNA lesions in skin. Photodermatology, Photoimmunology and Photomedicine, 36(6), 476–477.
Aurum, F. S., & Nguyen, L. T. (2019). Efficacy of photoactivated curcumin to decontaminate food surfaces under blue light emitting diode. Journal of Food Process Engineering, 42, Article e12988. https://doi.org/10.1111/jfpe.12988
Butot, S., Cantergiani, F., Moser, M., Jean, J., Lima, A., Michot, L., Putallaz, T., Stroheker, T., & Zuber, S. (2018). UV-C inactivation of foodborne bacterial and viral pathogens and surrogates on fresh and frozen berries. International Journal of Food Microbiology, 275, 8–16. https://doi.org/10.1016/j.ijfoodmicro.2018.03.016
Article PubMed CAS Google Scholar
Chua, A., Chong, L., Ghate, V., Yuk, H.-G., & Zhou, W. (2021). Antifungal action of 405 nm light emitting diodes on tomatoes in a meso-scale system and their effect on the physicochemical properties. Postharvest Biology and Technology, 172, Article 111366. https://doi.org/10.1016/j.postharvbio.2020.111366
Correa, T. Q., Blanco, K. C., Garcia, E. B., Perez, S. M. L., Chianfrone, D. J., Morais, V. S., & Bagnato, V. S. (2020). Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in meat and fruit. Photodiagnosis and Photodynamic Therapy, 30, Article 101678. https://doi.org/10.1016/j.pdpdt.2020.101678
Article PubMed CAS Google Scholar
Ahmed, W., Azmat, R., Khan, S. U., Khan, S. M., Liaquat, M., Qayyum, A., & Mehmood, A. (2013). Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and Technology, 86, 337–345. https://doi.org/10.1016/J.POSTHARVBIO.2013.07.026
Colares, F., & de Oliveira, A. C. (2020). UV-C radiation on fresh fig quality. Science in Agriculture. https://doi.org/10.1590/1678-992X-2019-0155
Cote, S., Rodoni, L., Miceli, E., Concellon, A., Civello, P. M., & Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83–89. https://doi.org/10.1016/j.postharvbio.2013.03.009
Montemayor, J. D., Smith, H. A., Peres, N. A., & Lahiri, S. N. (2023). Potential of UV-C for management of two-spotted spider mites and thrips in Florida strawberry. Pest Management Science, 79, 891–898. https://doi.org/10.1002/ps.7263
Article PubMed CAS Google Scholar
Toor, R. K., & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Research International, 38(5), 487–494. https://doi.org/10.1016/j.foodres.2004.10.016
Jiang, Z., Xu, M., Dong, J., Zhu, Y., Lou, P., Han, Y., Hao, J., Yang, Y., Ni, J., & Xu, M. (2022). UV-B pre-irradiation induces cold tolerance in tomato fruit by SlUVR8-mediated upregulation of superoxide dismutase and catalase. Postharvest Biology and Technology, 185, Article 111777.
Knorozer, O. C., Durner, J., & Boger, P. (1996). Alterations in the antioxidative system of suspension cultured soybean cells induced by oxidative stress. Physiologia Plantarum, 97, 388–396.
Menaka, M., Asrey, R., Vinod, B. R., Ahamad, S., Meena, N. K., Bhan, C., & Goswami, A. K. (2024). UV-C irradiation enhances the quality and shelf-life of stored guava fruit via boosting the antioxidant systems and defense responses. Food Bioprocess Technology, 17, 3704–3715. https://doi.org/10.1007/s11947-024-03338-8
Pelletier, M. G., Wanjura, J. D., & Holt, G. A. (2017). Chemical-Free Cotton Defoliation by; Mechanical. Flame and Laser Girdling. Agronomy, 7(1), 1–18. https://doi.org/10.3390/agronomy7010009
Zhao, Z. L., & Gang, T. (2014). A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering, 66(12), 15–24.
Comments (0)