Aspects of pathogen inactivation via absorption of short-pulse UV-C irradiation for advanced decontamination strategies

Reed, N. G. (2010). The history of ultraviolet germicidal irradiation for air disinfection. Public Health Reports, 125(1), 15–27. https://doi.org/10.1177/003335491012500105

Article  PubMed  PubMed Central  Google Scholar 

Khaiboullina, S., Uppal, T., Dhabarde, N., Subramanian, V. R., & Verma, S. C. (2021). Inactivation of Human Coronavirus by Titania nanoparticle coatings and uvc radiation: throwing light on SARS-CoV-2. Viruses, 13(1), 19. https://doi.org/10.3390/v13010019

Article  CAS  Google Scholar 

Bono, N., Ponti, F., Punta, C., & Candiani, G. (2021). Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview. Materials, 14(5), 1075. https://doi.org/10.3390/ma14051075

Article  PubMed  PubMed Central  CAS  Google Scholar 

Heßling, M., Hönes, K., Vatter, P., & Lingenfelder, C. (2020). Ultraviolet irradiation doses for coronavirus inactivation – review and analysis of coronavirus photoinactivation studies. GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000343

Article  PubMed  PubMed Central  Google Scholar 

Szeto, W., Yam, W. C., Huang, H., & Leung, C. (2020). The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infectious Diseases, 20, 127.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Narita, K., Asano, K., Naito, K., Ohashi, H., Sasaki, M., Morimoto, Y., Igarashi, T., & Nakane, A. (2020). Ultraviolet c light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens. Journal of Hospital Infection, 105(3), 459–467.

Article  Google Scholar 

Enaki, N. A., Munteanu, I., Paslari, T., Turcan, M., Starodub, E., Bazgan, S., Podoleanu, D., Ristoscu, C., Anghel, S., Badiceanu, M., & Mihailescu, I. N. (2023). Topological avenue for efficient decontamination of large volumes of fluids via UVC irradiation of packed metamaterials. Materials, 16(13), 45–59. https://doi.org/10.3390/ma16134559

Article  CAS  Google Scholar 

Munteanu, I., Starodub, E., Bazgan, S., Turcan, M., Paslari, T., Podoleanu, D., & Enaki, N. A. (2024). Ultraviolet c intensity dependence of decontamination efficiency for pathogens as function of repacked metamaterials with screw channels. European Biophysics Journal, 53(3), 133–145. https://doi.org/10.1007/s00249-024-01702-2

Article  PubMed  CAS  Google Scholar 

Enaki, N., Profir, A., Ciobanu, N., Bazgan, S., Nistreanu, A., Turcan, M., Starodub, E., Paslari, T., Ristoscu, C., Badiceanu, M., & Mihailescu, I. N. (2018). Optical metamaterials for decontamination of translucent liquids and gases. Journal of Physics D: Applied Physics. https://doi.org/10.1088/1361-6463/aad705. (J. Phys. D: Appl. Phys.

Article  Google Scholar 

Kowalski, W. (2009). UVGI disinfection Theory. Ultraviolet germicidal irradiation handbook (pp. 17–50). Netherlands: Springer.

Chapter  Google Scholar 

Biasin, M., Bianco, A., Pareschi, G., et al. (2021). UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Scientific Reports, 11, 6260. https://doi.org/10.1038/s41598-021-85425-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Born, M., Oppenheimer, J. R. Zur 1927 Quantentheorie der Molekeln [On the Quantum Theory of Molecules]. În: Annalen der Physik (in German). 389(20): 457–461.

SCHUBERT, M., WILHELMI, B. Nonlinear Optics and Quantum Electronics. (Wiley. 1986), p. 752

Wengraitis, S., McCubbin, P., Wade, M. M., Biggs, T. D., Hall, S., Williams, L. I., & Zulich, A. W. (2013). Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles. Photochemistry and Photobiology, 89(1), 127–131. https://doi.org/10.1111/j.1751-1097.2012.01203.x

Article  PubMed  CAS  Google Scholar 

Rastogi, R. P., Richa, K. A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids. https://doi.org/10.4061/2010/592980

Article  PubMed  PubMed Central  Google Scholar 

Comanici, R., Gabel, B., Gustavsson, T., Markovitsi, D., Cornaggia, C., Pommeret, S., Rusu, C., & Kryschi, C. (2006). Femtosecond spectroscopic study of carminic acid–DNA interactions. Chemical Physics, 325(Issues 2–3), 509–518. https://doi.org/10.1016/j.chemphys.2006.01.026

Article  CAS  Google Scholar 

Enaki, N. A., Paslari, T., Bazgan, S., et al. (2022). UVC radiation intensity dependence of pathogen decontamination rate: Semiclassical theory and experiment. The European Physical Journal Plus, 137, Article 1047. https://doi.org/10.1140/epjp/s13360-022-03252-y

Article  PubMed  CAS  Google Scholar 

Tsen, S. W. D., Wu, T. C., Kiang, J. G., et al. (2012). Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation. Journal Biomedical Science. https://doi.org/10.1186/1423-0127-19-62

Article  Google Scholar 

Miller, R. L., & Plagemann, P. G. (1974). Effect of ultraviolet light on mengovirus: Formation of uracil dimers, instability and degradation of capsid, and covalent linkage of protein to viral RNA. Journal of Virology, 13(3), 729–739. https://doi.org/10.1128/JVI.13.3.729-739.1974

Article  PubMed  PubMed Central  CAS  Google Scholar 

W. Dai, J. Reimann, D. Hanaor, C. Ferrero, Y. Gan, 2019 Modes of wall induced granular crystallisation in vibrational packing. Granular Matter, [Google Scholar] [CrossRef][Green Version

Y.R. Shen, N. Bloembergen, 1965 Theory of simulated Brillouin and Raman scattering. Physics Review. A1787A1805.

Crespo-Hernández, C. E., Cohen, B., & Kohler, B. (2005). Base stacking controls excited-state dynamics in A.T DNA. Nature. https://doi.org/10.1038/nature03933

Article  PubMed  Google Scholar 

Ahlawat, K., Jangra, R., Ish, A., Jain, N., & Prakash, R. (2024). A dielectric barrier discharge based low pressure narrow band far UV-C 222 nm excimer lamp and its efficiency analysis. Physica Scripta. https://doi.org/10.1088/1402-4896/ad1cb9

Article  Google Scholar 

Ahlawat, K., et al. (2023). Analysis of a UV photocatalytic oxidation-based disinfection system for hydroxyl radicals, negative air ions generation and their impact on inactivation of pathogenic micro-organisms. Review Of Scientific Instruments, 94, Article 104103. https://doi.org/10.1063/5.0151619

Article  PubMed  CAS  Google Scholar 

Gadodia, V., Ahlawat, K., Jangra, R., et al. (2024). Potential use of DBD based 222 nm exciplex light source for milk sterilization and its comparative analysis with 253 nm UV-light and conventional pasteurization. Food Measure, 18, 7595–7606. https://doi.org/10.1007/s11694-024-02751-z

Article  Google Scholar 

Gadodia, V., et al. (2025). Assessing the influence of far UV-C (222 nm) and UV-C (254 nm) treatment on the physicochemical and microbial properties of milk in an annular flow reactor. AIP Advances. https://doi.org/10.1063/5.0250337

Article  Google Scholar 

Comments (0)

No login
gif