Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., & Martiny, A. C. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110, 9824.
Article PubMed PubMed Central CAS Google Scholar
Moran, M. A. (2015). The global ocean microbiome. Science. https://doi.org/10.1126/science.aac8455
Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95, 6578.
Article PubMed PubMed Central CAS Google Scholar
Gao, X., Jiang, Y., Lin, Y., Kim, K. H., Fang, Y., Yi, J., Meng, L., Lee, H. C., Lu, Z., Leddy, O., Zhang, R., Tu, Q., Feng, W., Nair, V., Griffin, P. J., Shi, F., Shekhawat, G. S., Dinner, A. R., Park, H. G., & Tian, B. (2020). Structured silicon for revealing transient and integrated signal transductions in microbial systems. Science Advances, 6, Article eaay2760.
Article PubMed PubMed Central CAS Google Scholar
McCuskey, S. R., Chatsirisupachai, J., Zeglio, E., Parlak, O., Panoy, P., Herland, A., Bazan, G. C., & Nguyen, T. Q. (2022). Current progress of interfacing organic semiconducting materials with bacteria. Chemical Reviews, 122, 4791.
Article PubMed CAS Google Scholar
Yang, P., Cai, R., Kim, J. M., Cestellos-Blanco, S., & Jin, J. (2020). Microbes 2.0: Engineering microbes with nanomaterials. AsiaChem Magazine, 1, 36.
Cestellos-Blanco, S., Zhang, H., Kim, J. M., Xiao Shen, Y., & Yang, P. (2020). Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nature Catalysis, 3, 245.
Zhang, H., Liu, H., Tian, Z., Lu, D., Yu, Y., Cestellos-Blanco, S., Sakimoto, K. K., & Yang, P. (2018). Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nature Nanotechnology, 13, 900.
Article PubMed CAS Google Scholar
Paterno, G. M., Lanzani, G., Bondelli, G., Sakai, V. G., Sesti, V., & Bertarelli, C. (2020). The effect of an intramembrane light-actuator on the dynamics of phospholipids in model membranes and intact cells. Langmuir, 36, 11517.
Article PubMed CAS Google Scholar
Paternò, G. M., Bondelli, G., & Lanzani, G. (2021). Bringing microbiology to light: Toward all-optical electrophysiology in bacteria. Bioelectricity, 3, 136.
Article PubMed PubMed Central Google Scholar
de Souza-Guerreiro, T. C., Bondelli, G., Grobas, I., Donini, S., Sesti, V., Bertarelli, C., Lanzani, G., Asally, M., & Paternò, G. M. (2023). Membrane targeted azobenzene drives optical modulation of bacterial membrane potential. Advanced Science, 10, Article e0130224.
Paternò, G. M. (2024). Materials-driven strategies in bacterial engineering. MRS Communications, 14, 1027.
Article PubMed PubMed Central Google Scholar
Bren, A., Park, J. O., Towbin, B. D., Dekel, E., Rabinowitz, J. D., & Alon, U. (2016). Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP. Science and Reports, 6, Article 24834.
Ilgrande, C., Leroy, B., Wattiez, R., Vlaeminck, S. E., Boon, N., & Clauwaert, P. (2018). Metabolic and proteomic responses to salinity in synthetic nitrifying communities of Nitrosomonas spp. and Nitrobacter spp. Frontiers in Microbiology, 9, Article 418659.
Kremer, K., van Teeseling, M. C. F., Schada von Borzyskowski, L., Bernhardsgrütter, I., van Spanning, R. J. M., Gates, A. J., Remus-Emsermann, M. N. P., Thanbichler, M., & Erb, T. J. (2019). Dynamic metabolic rewiring enables efficient acetyl coenzyme A assimilation in Paracoccus denitrificans. MBio. https://doi.org/10.1128/mBio.00805-19
Article PubMed PubMed Central Google Scholar
Marbehan, X., Roger, M., Fournier, F., Infossi, P., Guedon, E., Delecourt, L., Lebrun, R., Giudici-Orticoni, M. T., & Delaunay, S. (2024). Combining metabolic flux analysis with proteomics to shed light on the metabolic flexibility: The case of Desulfovibrio vulgaris Hildenborough. Frontiers in Microbiology, 15, 1336360.
Article PubMed PubMed Central Google Scholar
Liu, X., Chu, G., Du, Y., Li, J., & Si, Y. (2019). The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1. World Journal of Microbiology & Biotechnology, 35, 64.
Benarroch, J. M., & Asally, M. (2020). The microbiologist’s guide to membrane potential dynamics. Trends in Microbiology, 28, 304.
Article PubMed CAS Google Scholar
Lo, W. C., Krasnopeeva, E., & Pilizota, T. (2024). Bacterial electrophysiology. Annual Review of Biophysics, 53, 487.
Article PubMed CAS Google Scholar
Kralj, J. M., Hochbaum, D. R., Douglass, A. D., & Cohen, A. E. (2011). Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science, 333, 345.
Article PubMed CAS Google Scholar
Prindle, A., Liu, J., Asally, M., Ly, S., Garcia-Ojalvo, J., & Süel, G. M. (2015). Ion channels enable electrical communication in bacterial communities. Nature, 527, 59.
Article PubMed PubMed Central CAS Google Scholar
Yang, C. Y., Bialecka-Fornal, M., Weatherwax, C., Larkin, J. W., Prindle, A., Liu, J., Garcia-Ojalvo, J., & Süel, G. M. (2020). Encoding membrane-potential-based memory within a microbial community. Cell Systems, 10, 417.
Article PubMed PubMed Central CAS Google Scholar
Stratford, J. P., Edwards, C. L. A., Ghanshyam, M. J., Malyshev, D., Delise, M. A., Hayashi, Y., & Asally, M. (2019). Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity. Proceedings of the National Academy of Sciences of the United States of America, 116, 9552.
Article PubMed PubMed Central CAS Google Scholar
Akabuogu, E., Carneiro da Cunha Martorelli, V., Krašovec, R., Roberts, I. S., & Waigh, T. A. (2025). Emergence of ion-channel-mediated electrical oscillations in Escherichia coli biofilms. eLife. https://doi.org/10.7554/elife.92525.3
Article PubMed PubMed Central Google Scholar
Blee, J. A., Roberts, I. S., & Waigh, T. A. (2020). Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physics Biology, 17, Article 036001.
Ávila-Pérez, M., Hellingwerf, K. J., & Kort, R. (2006). Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA. Journal of Bacteriology, 188, 6411.
Article PubMed PubMed Central Google Scholar
Van Der Steen, J. B., & Hellingwerf, K. J. (2015). Photochemistry and photobiology (pp. 1032–1045). John Wiley & Sons, Ltd.
van der Horst, M. A., Key, J., & Hellingwerf, K. J. (2007). Photosensing in chemotrophic, non-phototrophic bacteria: Let there be light sensing too. Trends in Microbiology, 15, 554.
Metcalf, W. W., Zhang, J. K., Shi, X., & Wolfe, R. S. (1996). Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. Journal of Bacteriology, 178, 5797.
Article PubMed PubMed Central CAS Google Scholar
Kumar, S., Rai, A. K., Mishra, M. N., Shukla, M., Singh, P. K., & Tripathi, A. K. (2012). RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. Microbiology, 158, 2891.
Article PubMed CAS Google Scholar
Hecker, M., Pané-Farré, J., & Völker, U. (2007). SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annual Review of Microbiology, 61, 215.
Comments (0)