Advances in fibroblast-based cardiac reprogramming in the treatment of heart disease

Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15:585–600. https://doi.org/10.1038/s41569-018-0036-6.

Article  PubMed  PubMed Central  Google Scholar 

Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117:1450–88. https://doi.org/10.1093/cvr/cvaa324.

Article  CAS  PubMed  Google Scholar 

Davis J, Molkentin JD. Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol. 2014;70:9–18. https://doi.org/10.1016/j.yjmcc.2013.10.019.

Article  CAS  PubMed  Google Scholar 

Venugopal H, Hanna A, Humeres C, Frangogiannis NG. Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells. 2022. https://doi.org/10.3390/cells11091386.

Article  PubMed  PubMed Central  Google Scholar 

Riching AS, Song K. Cardiac regeneration: new insights into the frontier of ischemic heart failure therapy. Front Bioeng Biotechnol. 2020;8:637538. https://doi.org/10.3389/fbioe.2020.637538.

Article  PubMed  Google Scholar 

Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389:197–210. https://doi.org/10.1016/s0140-6736(16)30677-8.

Article  PubMed  Google Scholar 

Muniyandi P, Palaninathan V, Mizuki T, Maekawa T, Hanajiri T, Mohamed S. Poly(lactic-co-glycolic acid)/polyethylenimine nanocarriers for direct genetic reprogramming of microRNA targeting cardiac fibroblasts. ACS Appl Nano Mater. 2020;3:2491–505. https://doi.org/10.1021/acsanm.9b02586.

Article  CAS  Google Scholar 

Nicoletti L, Paoletti C, Tarricone G, Andreana I, Stella B, Arpicco S, Divieto C, Mattu C, Chiono V. Lipoplexes for effective in vitro delivery of microRNAs to adult human cardiac fibroblasts for perspective direct cardiac cell reprogramming. Nanomed Nanotechnol Biol Med. 2022;45:102589. https://doi.org/10.1016/j.nano.2022.102589.

Article  CAS  Google Scholar 

Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021;184:3852–72. https://doi.org/10.1016/j.cell.2021.06.024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118:400–9. https://doi.org/10.1161/circresaha.115.307778.

Article  CAS  PubMed  Google Scholar 

Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, et al. Cells of the adult human heart. Nature. 2020;588:466–72. https://doi.org/10.1038/s41586-020-2797-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013;10:15–26. https://doi.org/10.1038/nrcardio.2012.158.

Article  CAS  PubMed  Google Scholar 

Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17:771–9. https://doi.org/10.1016/0092-8674(79)90317-9.

Article  CAS  PubMed  Google Scholar 

Lombardi R, Chen SN, Ruggiero A, Gurha P, Czernuszewicz GZ, Willerson JT, Marian AJ. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ Res. 2016;119:41–54. https://doi.org/10.1161/circresaha.115.308136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ubil E, Duan J, Pillai IC, Rosa-Garrido M, Wu Y, Bargiacchi F, Lu Y, Stanbouly S, Huang J, Rojas M, et al. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature. 2014;514:585–90. https://doi.org/10.1038/nature13839.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86. https://doi.org/10.1016/j.cell.2010.07.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Wijk B, van den Hoff M. Epicardium and myocardium originate from a common cardiogenic precursor pool. Trends Cardiovasc Med. 2010;20:1–7. https://doi.org/10.1016/j.tcm.2010.02.011.

Article  PubMed  Google Scholar 

Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. Microrna-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465–73. https://doi.org/10.1161/circresaha.112.269035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.

Article  CAS  PubMed  Google Scholar 

Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–53. https://doi.org/10.1126/science.1164270.

Article  CAS  PubMed  Google Scholar 

Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–9. https://doi.org/10.1126/science.1162494.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471:58–62. https://doi.org/10.1038/nature09871.

Article  CAS  PubMed  Google Scholar 

Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27:743–5. https://doi.org/10.1038/nbt.1554.

Article  CAS  PubMed  Google Scholar 

Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5. https://doi.org/10.1038/nature10135.

Article  CAS  PubMed  Google Scholar 

Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000. https://doi.org/10.1016/0092-8674(87)90585-x.

Article  CAS  PubMed  Google Scholar 

Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41. https://doi.org/10.1038/nature08797.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han JK, Chang SH, Cho HJ, Choi SB, Ahn HS, Lee J, Jeong H, Youn SW, Lee HJ, Kwon YW, et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation. 2014;130:1168–78. https://doi.org/10.1161/circulationaha.113.007727.

Article  CAS  PubMed  Google Scholar 

Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M

Comments (0)

No login
gif