Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15:585–600. https://doi.org/10.1038/s41569-018-0036-6.
Article PubMed PubMed Central Google Scholar
Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117:1450–88. https://doi.org/10.1093/cvr/cvaa324.
Article CAS PubMed Google Scholar
Davis J, Molkentin JD. Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol. 2014;70:9–18. https://doi.org/10.1016/j.yjmcc.2013.10.019.
Article CAS PubMed Google Scholar
Venugopal H, Hanna A, Humeres C, Frangogiannis NG. Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells. 2022. https://doi.org/10.3390/cells11091386.
Article PubMed PubMed Central Google Scholar
Riching AS, Song K. Cardiac regeneration: new insights into the frontier of ischemic heart failure therapy. Front Bioeng Biotechnol. 2020;8:637538. https://doi.org/10.3389/fbioe.2020.637538.
Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389:197–210. https://doi.org/10.1016/s0140-6736(16)30677-8.
Muniyandi P, Palaninathan V, Mizuki T, Maekawa T, Hanajiri T, Mohamed S. Poly(lactic-co-glycolic acid)/polyethylenimine nanocarriers for direct genetic reprogramming of microRNA targeting cardiac fibroblasts. ACS Appl Nano Mater. 2020;3:2491–505. https://doi.org/10.1021/acsanm.9b02586.
Nicoletti L, Paoletti C, Tarricone G, Andreana I, Stella B, Arpicco S, Divieto C, Mattu C, Chiono V. Lipoplexes for effective in vitro delivery of microRNAs to adult human cardiac fibroblasts for perspective direct cardiac cell reprogramming. Nanomed Nanotechnol Biol Med. 2022;45:102589. https://doi.org/10.1016/j.nano.2022.102589.
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021;184:3852–72. https://doi.org/10.1016/j.cell.2021.06.024.
Article CAS PubMed PubMed Central Google Scholar
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118:400–9. https://doi.org/10.1161/circresaha.115.307778.
Article CAS PubMed Google Scholar
Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, et al. Cells of the adult human heart. Nature. 2020;588:466–72. https://doi.org/10.1038/s41586-020-2797-4.
Article CAS PubMed PubMed Central Google Scholar
Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013;10:15–26. https://doi.org/10.1038/nrcardio.2012.158.
Article CAS PubMed Google Scholar
Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17:771–9. https://doi.org/10.1016/0092-8674(79)90317-9.
Article CAS PubMed Google Scholar
Lombardi R, Chen SN, Ruggiero A, Gurha P, Czernuszewicz GZ, Willerson JT, Marian AJ. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ Res. 2016;119:41–54. https://doi.org/10.1161/circresaha.115.308136.
Article CAS PubMed PubMed Central Google Scholar
Ubil E, Duan J, Pillai IC, Rosa-Garrido M, Wu Y, Bargiacchi F, Lu Y, Stanbouly S, Huang J, Rojas M, et al. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature. 2014;514:585–90. https://doi.org/10.1038/nature13839.
Article CAS PubMed PubMed Central Google Scholar
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86. https://doi.org/10.1016/j.cell.2010.07.002.
Article CAS PubMed PubMed Central Google Scholar
van Wijk B, van den Hoff M. Epicardium and myocardium originate from a common cardiogenic precursor pool. Trends Cardiovasc Med. 2010;20:1–7. https://doi.org/10.1016/j.tcm.2010.02.011.
Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. Microrna-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465–73. https://doi.org/10.1161/circresaha.112.269035.
Article CAS PubMed PubMed Central Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.
Article CAS PubMed Google Scholar
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–53. https://doi.org/10.1126/science.1164270.
Article CAS PubMed Google Scholar
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–9. https://doi.org/10.1126/science.1162494.
Article CAS PubMed PubMed Central Google Scholar
Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471:58–62. https://doi.org/10.1038/nature09871.
Article CAS PubMed Google Scholar
Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27:743–5. https://doi.org/10.1038/nbt.1554.
Article CAS PubMed Google Scholar
Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5. https://doi.org/10.1038/nature10135.
Article CAS PubMed Google Scholar
Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000. https://doi.org/10.1016/0092-8674(87)90585-x.
Article CAS PubMed Google Scholar
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41. https://doi.org/10.1038/nature08797.
Article CAS PubMed PubMed Central Google Scholar
Han JK, Chang SH, Cho HJ, Choi SB, Ahn HS, Lee J, Jeong H, Youn SW, Lee HJ, Kwon YW, et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation. 2014;130:1168–78. https://doi.org/10.1161/circulationaha.113.007727.
Article CAS PubMed Google Scholar
Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M
Comments (0)