Jarczak D, Kluge S, Nierhaus A. Sepsis—pathophysiology and therapeutic concepts. Front Med. 2021;8: 628302.
Barbeiro DF, Barbeiro HV, Faintuch J, Ariga SKK, Mariano M, Popi AF, et al. B-1 cells temper endotoxemic inflammatory responses. Immunobiology. 2011;216:302–8.
Article CAS PubMed Google Scholar
da-Silva FP, Chiamolera M, Charles N, Kanamaru Y, Velasco IT, Benhamou M, et al. B lymphocytes undergo apoptosis because of FcγRIIb stress response to infection: a novel mechanism of cell death in sepsis. Shock. 2006;25:61–5.
Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ, Chang KC, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166:6952–63.
Article CAS PubMed Google Scholar
Zaretsky AG, Engiles JB, Hunter CA. Infection-induced changes in hematopoiesis. J Immunol. 2014;192:27–33.
Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 2006;6:813–22.
Article CAS PubMed Google Scholar
Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol. 2007;7:532–42.
Article CAS PubMed Google Scholar
Melo ES, Barbeiro HV, Ariga S, Goloubkova T, Curi R, Velasco IT, et al. Immune cells and oxidative stress in the endotoxin tolerance mouse model. Braz J Med Biol Res. 2010;43:57–67.
Article CAS PubMed Google Scholar
Chang KC, Unsinger J, Davis CG, Schwulst SJ, Muenzer JT, Strasser A, et al. Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J. 2007;21:708–19.
Article CAS PubMed Google Scholar
McDium JE, Muenzer JT, Rachdi L, Chang KC, Davis CG, Dunne WM, et al. Peptide-mediated activation of Akt and extracellular regulated kinase signaling prevents lymphocyte apoptosis. FASEB J. 2008;22:561–8.
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic transplants of bone marrow. Transplantation. 1968;6:230–47.
Article CAS PubMed Google Scholar
Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2:313–9.
Article CAS PubMed PubMed Central Google Scholar
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.
Article CAS PubMed Google Scholar
Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy. 2005;7:393–5.
Article CAS PubMed Google Scholar
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.
Article CAS PubMed Google Scholar
Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58:929–39.
Article CAS PubMed Google Scholar
Lorigados CB, Ariga SKK, De Lima TM, Barbeiro DF, Krieger JE, Soriano FG. Bone marrow cells transplant in septic mice modulates systemic inflammatory response via cell-cell contact. Shock. 2019;51:381–8.
Article CAS PubMed Google Scholar
Mei SHJ, Haitsma JJ, Dos Santos CC, Deng Y, Lai PFH, Slutsky AS, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182:1047–57.
Article CAS PubMed Google Scholar
Hou YS, Liu LY, Chai JK, Yu YH, Duan HJ, Hu Q, et al. Lipopolysaccharide pretreatment inhibits LPS-induced human umbilical cord mesenchymal stem cell apoptosis via upregulating the expression of cellular FLICE-inhibitory protein. Mol Med Rep. 2015;12:2521–8.
Article CAS PubMed PubMed Central Google Scholar
He X, Wang H, Jin T, Xu Y, Mei L, Yang J. TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt3a and Wnt5a signaling. PLoS ONE. 2016;11: e0149876.
Article PubMed PubMed Central Google Scholar
Kurte M, Vega-Letter AM, Luz-Crawford P, Djouad F, Noël D, Khoury M, et al. Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Res Ther. 2020;11:416.
Article CAS PubMed PubMed Central Google Scholar
Yin F, Qian H, Duan C, Ning B. The bone marrow niche components are adversely affected in sepsis. Mol Biomed. 2020;1:10.
Article PubMed PubMed Central Google Scholar
Osorio EY, Gugala Z, Patterson GT, Palacios G, Cordova E, Uscanga-Palomeque A, et al. Inflammatory stimuli alter bone marrow composition and compromise bone health in the malnourished host. Front Immunol. 2022;13: 846246.
Article CAS PubMed PubMed Central Google Scholar
Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–6.
Article CAS PubMed Google Scholar
Nadri S, Soleimani M, Hosseni RH, Massumi M, Atashi A, Izadpanah R. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int J Dev Biol. 2007;51:723–9.
Article CAS PubMed Google Scholar
Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16.
Article CAS PubMed Google Scholar
Levy D, Ruiz JLM, Celestino AT, Silva SF, Ferreira AK, Isaac C, et al. Short-term effects of 7-ketocholesterol on human adipose tissue mesenchymal stem cells in vitro. Biochem Biophys Res Commun. 2014;446:720–5.
Article CAS PubMed Google Scholar
Nagaraju N, Varma A, Taksande A, Meshram RJ. Bone Marrow Changes in Septic Shock: A Comprehensive Review. Cureus [Internet]. 2023 [cited 2024 Dec 13]; Available from: https://www.cureus.com/articles/171473-bone-marrow-changes-in-septic-shock-a-comprehensive-review
Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227–30.
Article CAS PubMed PubMed Central Google Scholar
Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495:231–5.
Article CAS PubMed PubMed Central Google Scholar
Yu VWC, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang Y-H, et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med. 2015;212:759–74.
Article CAS PubMed PubMed Central Google Scholar
Wang H, Leng Y, Gong Y. Bone marrow fat and hematopoiesis. Front Endocrinol. 2018;9:694.
Comments (0)