Nwia SM, Li XC, Leite APO, Hassan R, Zhuo JL. The Na(+)/H(+) exchanger 3 in the intestines and the proximal tubule of the kidney: localization, physiological function, and key roles in Angiotensin II-induced hypertension. Front Physiol. 2022;13:861659.
Article PubMed PubMed Central Google Scholar
He P, Yun CC. Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3. J Biomed Biotechnol. 2010. https://doi.org/10.1155/2010/238080.
Article PubMed PubMed Central Google Scholar
He P, Klein J, Yun CC. Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2010;285:27869–78.
Article PubMed PubMed Central CAS Google Scholar
Goto S, Hosojima M, Kabasawa H, Saito A. The endocytosis receptor megalin: from bench to bedside. Int J Biochem Cell Biol. 2023;157:106393.
Article PubMed CAS Google Scholar
Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, et al. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Renal Physiol. 2012;302:F943–56.
Article PubMed CAS Google Scholar
Lorenz JN, Schultheis PJ, Traynor T, Shull GE, Schnermann J. Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Physiol. 1999;277:F447–53.
Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet. 1998;19:282–5.
Article PubMed CAS Google Scholar
Li XC, Soleimani M, Zhu D, Rubera I, Tauc M, Zheng X, et al. Proximal tubule-specific deletion of the NHE3 (Na(+)/H(+) exchanger 3) promotes the pressure-natriuresis response and lowers blood pressure in mice. Hypertension. 2018;72:1328–36.
Article PubMed CAS Google Scholar
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbaek LL, Nielsen R, et al. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2024
Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, et al. Effect of renal tubule-specific knockdown of the Na(+)/H(+) exchanger NHE3 in Akita diabetic mice. Am J Physiol Renal Physiol. 2019;317:F419–34.
Article PubMed PubMed Central CAS Google Scholar
Harris RC, Brenner BM, Seifter JL. Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vesicles from rats with diabetes mellitus. J Clin Invest. 1986;77:724–33.
Article PubMed PubMed Central CAS Google Scholar
O’Hagan M, Howey J, Greene SA. Increased proximal tubular reabsorption of sodium in childhood diabetes mellitus. Diabet Med. 1991;8:44–8.
Mbanya JC, Thomas TH, Taylor R, Alberti KG, Wilkinson R. Increased proximal tubular sodium reabsorption in hypertensive patients with type 2 diabetes. Diabet Med. 1989;6:614–20.
Article PubMed CAS Google Scholar
Klisic J, Hu MC, Nief V, Reyes L, Fuster D, Moe OW, et al. Insulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol Renal Physiol. 2002;283:F532–9.
Article PubMed CAS Google Scholar
Beloto-Silva O, Machado UF, Oliveira-Souza M. Glucose-induced regulation of NHEs activity and SGLTs expression involves the PKA signaling pathway. J Membr Biol. 2011;239:157–65.
Article PubMed CAS Google Scholar
du Cheyron D, Chalumeau C, Defontaine N, Klein C, Kellermann O, Paillard M, et al. Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int. 2003;64:939–49.
Xu L, Dixit MP, Nullmeyer KD, Xu H, Kiela PR, Lynch RM, et al. Regulation of Na+/H+ exchanger-NHE3 by angiotensin-II in OKP cells. Biochim Biophys Acta. 2006;1758:519–26.
Article PubMed CAS Google Scholar
Benetti A, Martins FL, Sene LB, Shimizu MHM, Seguro AC, Luchi WM, et al. Urinary DPP4 correlates with renal dysfunction, and DPP4 inhibition protects against the reduction in megalin and podocin expression in experimental CKD. Am J Physiol Renal Physiol. 2021;320:F285–96.
Article PubMed CAS Google Scholar
Mima A, Nomura A, Fujii T. Current findings on the efficacy of incretin-based drugs for diabetic kidney disease: a narrative review. Biomed Pharmacother. 2023;165:115032.
Borges-Junior FA, Silva Dos Santos D, Benetti A, Polidoro JZ, Wisnivesky ACT, Crajoinas RO, et al. Empagliflozin inhibits proximal tubule NHE3 activity, preserves GFR, and restores euvolemia in nondiabetic rats with induced heart failure. J Am Soc Nephrol. 2021;32:1616–29.
Article PubMed PubMed Central Google Scholar
Queiroz-Leite GD, Peruzzetto MC, Neri EA, Reboucas NA. Transcriptional regulation of the Na(+)/H(+) exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells. Biochem Biophys Res Commun. 2011;409:470–6.
Article PubMed CAS Google Scholar
Castelo-Branco RC, Leite-Dellova DCA, Fernandes FB, Malnic G, de Mello-Aires M. The effects of angiotensin-(1–7) on the exchanger NHE3 and on [Ca(2+)](i) in the proximal tubules of spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2017;313:F450–60.
Article PubMed CAS Google Scholar
Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, et al. A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol. 2020;319:F712–28.
Article PubMed PubMed Central CAS Google Scholar
Grange C, Gurrieri M, Verta R, Fantozzi R, Pini A, Rosa AC. Histamine in the kidneys: what is its role in renal pathophysiology? Br J Pharmacol. 2020;177:503–15.
Article PubMed CAS Google Scholar
Sudarikova AV, Fomin MV, Sultanova RF, Zhao Y, Perez S, Domondon M, et al. Functional role of histamine receptors in the renal cortical collecting duct cells. Am J Physiol Cell Physiol. 2022;322:C775–86.
Article PubMed PubMed Central CAS Google Scholar
Zimmermann AS, Burhenne H, Kaever V, Seifert R, Neumann D. Systematic analysis of histamine and N-methylhistamine concentrations in organs from two common laboratory mouse strains: C57Bl/6 and Balb/c. Inflamm Res. 2011;60:1153–9.
Article PubMed CAS Google Scholar
Burtin C, Scheinmann P, Paupe J, Canu P, Goy J. Tissue histamine levels in male and female normal and nude mice. Agents Actions. 1982;12:199–200.
Article PubMed CAS Google Scholar
Sedor JR, Abboud HE. Actions and metabolism of histamine in glomeruli and tubules of the human kidney. Kidney Int. 1984;26:144–52.
Article PubMed CAS Google Scholar
Chen L, Chou CL, Knepper MA. A comprehensive map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J Am Soc Nephrol. 2021;32:897–912.
Article PubMed PubMed Central CAS Google Scholar
Wu H, Malone AF, Donnelly EL, Kirita Y, Uchimura K, Ramakrishnan SM, et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J Am Soc Nephrol. 2018;29:2069–80.
Article PubMed PubMed Central CAS Google Scholar
Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. Cell Stem Cell. 2018;23(869–881):e8.
Comments (0)