Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102. https://doi.org/10.1038/s41467-019-13668-3.
Article PubMed PubMed Central CAS Google Scholar
Arnold PK, Finley LWS. Regulation and function of the mammalian Tricarboxylic acid cycle. J Biol Chem. 2023;299:102838. https://doi.org/10.1016/j.jbc.2022.102838.
Article PubMed CAS Google Scholar
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20:28. https://doi.org/10.1186/s12943-021-01316-8.
Article PubMed PubMed Central Google Scholar
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473. https://doi.org/10.1126/science.aaw5473.
Article PubMed PubMed Central CAS Google Scholar
Allen CN, Arjona SP, Santerre M, Sawaya BE. Hallmarks of metabolic reprogramming and their role in viral pathogenesis. Viruses. 2022;14:602. https://doi.org/10.3390/v14030602.
Article PubMed PubMed Central CAS Google Scholar
Fan X, Yang M, Lang Y, Lu S, Kong Z, Gao Y, et al. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis. 2024;15:442. https://doi.org/10.1038/s41419-024-06833-0.
Article PubMed PubMed Central CAS Google Scholar
Shen T, Wang T. Metabolic reprogramming in COVID-19. Int J Mol Sci. 2021;22:11475. https://doi.org/10.3390/ijms222111475.
Article PubMed PubMed Central CAS Google Scholar
Gao J, Zhu Y, Bei Y. Metabolic reprogramming in cardiovascular diseases. J Cardiovasc Transl Res. 2024;17:33–5. https://doi.org/10.1007/s12265-024-10491-0.
McGettrick A, Bourner L, Dorsey F, O’Neill L. Metabolic messengers: itaconate. Nat Metabolism. 2024;6:1661–67. https://doi.org/10.1038/s42255-024-01092-x.
Baup S. Ueber eine neue Pyrogen-Citronensäure, und Über benennung der Pyrogen‐Säuren Überhaupt. Ann Pharm. 1836;19:29–38. https://doi.org/10.1002/jlac.18360190107.
Turner E. Elements of chemistry: including the actual state and prevalent doctrines of the science. Taylor and Walton. 1841.
Berlin NI. Hans krebs: architect of intermediary metabolism 1933–1937. JAMA. 1994;271:1137–38. https://doi.org/10.1001/jama.1994.03510380095054.
Ye DY, Noh MH, Moon JH, Milito A, Kim M, Lee JW, et al. Kinetic compartmentalization by unnatural reaction for Itaconate production. Nat Commun. 2022;13:5353. https://doi.org/10.1038/s41467-022-33033-1.
Article PubMed PubMed Central CAS Google Scholar
Lee CG, Jenkins NA, Gilbert DJ, Copeland NG, O’Brien WE. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA. Immunogenetics. 1995;41:263–70. https://doi.org/10.1007/BF00172150.
Article PubMed CAS Google Scholar
Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing Itaconic acid production. Proc Natl Acad Sci USA. 2013;110:7820–5. https://doi.org/10.1073/pnas.1218599110.
Article PubMed PubMed Central CAS Google Scholar
Shi X, Zhou H, Wei J, Mo W, Li Q, Lv X. The signaling pathways and therapeutic potential of Itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biol. 2022;58:102553. https://doi.org/10.1016/j.redox.2022.102553.
Article PubMed PubMed Central CAS Google Scholar
O’Neill LAJ, Artyomov MN. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol. 2019;19:273 – 81. https://doi.org/10.1038/s41577-019-0128-5.
Hersch SJ, Navarre WW. The Salmonella LysR family regulator RipR activates the SPI-13-Encoded Itaconate degradation cluster. Infect Immun. 2020;88. https://doi.org/10.1128/IAI.00303-20.
Ki N, Kim J, Jo I, Hyun Y, Ryu S, Ha NC. Isocitrate binds to the Itaconic acid-responsive LysR-type transcriptional regulator RipR in Salmonella pathogenesis. J Biol Chem. 2022;298:102562. https://doi.org/10.1016/j.jbc.2022.102562.
Article PubMed PubMed Central CAS Google Scholar
Xie L, Xu Y, Ding X, Liang S, Li D, Fu A, et al. Itaconic acid and dimethyl Itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother. 2023;167:115487. https://doi.org/10.1016/j.biopha.2023.115487.
Article PubMed CAS Google Scholar
Cordes T, Michelucci A, Hiller K. Itaconic acid: the surprising role of an industrial compound as a mammalian antimicrobial metabolite. Annu Rev Nutr. 2015;35:451–73. https://doi.org/10.1146/annurev-nutr-071714-034243.
Article PubMed CAS Google Scholar
Nemeth B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, et al. Abolition of mitochondrial substrate-level phosphorylation by Itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J. 2016;30:286–300. https://doi.org/10.1096/fj.15-279398.
Article PubMed CAS Google Scholar
Yang W, Wang Y, Tao K, Li R. Metabolite Itaconate in host immunoregulation and defense. Cell Mol Biol Lett. 2023;28:100. https://doi.org/10.1186/s11658-023-00503-3.
Article PubMed PubMed Central CAS Google Scholar
Wu R, Chen F, Wang N, Tang D, Kang R. ACOD1 in immunometabolism and disease. Cell Mol Immunol. 2020;17:822–33. https://doi.org/10.1038/s41423-020-0489-5.
Article PubMed PubMed Central CAS Google Scholar
Cordes T, Metallo CM. Itaconate alters succinate and coenzyme A metabolism via Inhibition of mitochondrial complex II and Methylmalonyl-CoA mutase. Metabolites. 2021;11:117. https://doi.org/10.3390/metabo11020117.
Article PubMed PubMed Central CAS Google Scholar
Chun HL, Lee SY, Kim K-H, Lee CS, Oh T-J, Park HH. The crystal structure of mouse IRG1 suggests that cis-aconitate decarboxylase has an open and closed conformation. PLoS ONE. 2020;15:e0242383. https://doi.org/10.1371/journal.pone.0242383.
Article PubMed PubMed Central CAS Google Scholar
Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556:113–17. https://doi.org/10.1038/nature25986.
Article PubMed PubMed Central CAS Google Scholar
Gidon A, Louet C, Rost LM, Bruheim P, Flo TH. The tumor necrosis factor alpha and Interleukin 6 auto-paracrine signaling loop controls Mycobacterium avium infection via induction of IRF1/IRG1 in human primary macrophages. mBio. 2021;12:e0212121. https://doi.org/10.1128/mBio.02121-21.
Chen F, Lukat P, Iqbal AA, Saile K, Kaever V, van den Heuvel J, et al. Crystal structure of cis-aconitate decarboxylase reveals the impact of naturally occurring human mutations on Itaconate synthesis. Proc Natl Acad Sci USA. 2019;116:20644–54. https://doi.org/10.1073/pnas.1908770116.
Article PubMed PubMed Central CAS Google Scholar
Li Y, Gong W, Li W, Liu P, Liu J, Jiang H, et al. The IRG1-Itaconate axis: a regulatory hub for immunity and metabolism in macrophages. Int Rev Immunol. 2023;42:364–78. https://doi.org/10.1080/08830185.2022.2067153.
Comments (0)