The Relation of Density and Temperature Fluctuations to the Kinetic Energy of Turbulence in the Atmospheric Boundary Layer

P. V. Shcheglov, Problems of Optical Astronomy (Nauka, Moscow, 1980) [in Russian].

Google Scholar 

V. I. Tatarskii, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

Google Scholar 

A. M. Obukhov, Atmospheric Turbulence and Dynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

Google Scholar 

S. N. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction into Statistical Radiophysics, Vol. 2, Random Fields (Nauka, Moscow, 1978) [in Russian].

U. Frish, Turbulence. Kolmogorov’s Heritage (Nauka, Moscow, 1998) [in Russian].

Google Scholar 

G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953).

Google Scholar 

A. S. Monin and A. M. Yaglom, Statistical Hydromechanics, Part 2 (Nauka, Moscow, 1967) [in Russian].

Google Scholar 

S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).

Google Scholar 

A. M. Obukhov, “Pressure pulsations in a turbulent flow,” Dokl. Akad. Nauk SSSR 66 (1), 17–20 (1949).

Google Scholar 

G. K. Batchelor, “Pressure fluctuations in isotropic turbulence,” Math. Proc. Cambridge Philos. Soc. 47 (2), 359–374 (1951). https://doi.org/10.1017/S0305004100026712

Article  ADS  Google Scholar 

E. A. Spiegel and G. Veronis, “On the Boussinesq approximation for a compressible fluid,” Astrophys. J. 131, 442–447 (1960). https://doi.org/10.1086/146849

Article  ADS  MathSciNet  Google Scholar 

Y. Ogura and N. A. Phillips, “Scale analysis of deep and shallow convection in the atmosphere,” J. Atmos. Sci. 192 (2), 173–179 (1962). https://doi.org/10.1175/1520-0469(1962)019<0173:S-AODAS>2.0.CO;2

Article  ADS  Google Scholar 

K. R. Sreenivasan, “The passive scalar spectrum and the Obukhov–Corrsin constant,” Phys. Fluids 8 (1), 189–196 (1996). https://doi.org/10.1063/1.868826

Article  ADS  MathSciNet  Google Scholar 

G. I. Taylor, “The spectrum of turbulence,” Proc. Roy. Soc. London. Ser. A. 164, 476–490 (1938). https://doi.org/10.1098/rspa.1938.0032

Article  Google Scholar 

V. P. Yushkov, “Pressure fluctuations in turbulent atmosphere and their role in generation of adiabatic motions,” Moscow Univ. Phys. Bull. 75 (6), 547–558 (2020). https://doi.org/10.3103/S0027134920060223

Article  ADS  Google Scholar 

L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 6, Hydrodynamics (Nauka, Moscow, 1986) [in Russian].

A. M. Obukhov, “Temeprature field structure in a turbulent flow,” Izv. Akad. Nauk SSSR. Ser. Geofiz. Geogr. 13 (1), 58–69 (1949).

Google Scholar 

S. Corrsin, “The decay of isotropic temperature fluctuations in an isotropic turbulence,” J. Aeronaut. Sci. 18 (6), 417–423 (1951). https://doi.org/10.2514/8.1982

Article  MathSciNet  Google Scholar 

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88 (3), 541–562 (1978). https://doi.org/10.1017/S002211207800227X

Article  ADS  Google Scholar 

L. Mydlarski and Z. Warhaft, “Passive scalar statistics in high-Peclet-number grid turbulence,” J. Fluid Mech. 358, 135–175 (1998). https://doi.org/10.1017/S0022112097008161

Article  ADS  Google Scholar 

T. Hauf, U. Finke, J. Neisser, J. Bull, and J. Stangenberg, “A ground-based network for atmospheric pressure fluctuations,” J. Atmos. Ocean. Technol. 13 (5), 1001–1023 (1996). https://doi.org/10.1175/1520-0426(1996)013<1001:AGBNFA>2.0.CO;2

Article  ADS  Google Scholar 

M. J. Lighthill, “On sound generated aerodynamically. I. General theory,” Proc. Roy. Soc. London. Ser. A. 211 (1107), 564–587 (1952). https://doi.org/10.1098/rspa.1952.0060

Article  Google Scholar 

M. J. Lighthill, “On sound generated aerodynamically ii. Turbulence as a source of sound,” Proc. Roy. Soc. London. Ser. A. 222 (1148), 1–32 (1954). https://doi.org/10.1098/rspa.1954.0049

Article  Google Scholar 

E. V. Yushkov and V. P. Yushkov, “Acoustic scattering by turbulent fluctuations of pressure and entropy,” Moscow Univ. Phys. Bull. 66 (6), 609–615 (2011). https://doi.org/10.3103/S0027134911060233

Article  ADS  Google Scholar 

M. A. Kallistratova, “Experimantal study of acoustic dispersion in turbulent atmosphere,” Dokl. Akad. Nauk SSSR 125, 62–72 (1959).

Google Scholar 

W. W. Willmarth and C. E. Wooldridge, “Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer,” J. Fluid Mech. 14 (2), 187–210 (1962). https://doi.org/10.1017/S0022112062001160

Article  ADS  Google Scholar 

T. M. Farabee and M. J. Casarella, “Spectral features of wall pressure fluctuations beneath turbulent boundary layers,” Phys. Fluids A: Fluid Dynamics 3 (10), 2410–2420 (1991). https://doi.org/10.1063/1.858179

Article  ADS  Google Scholar 

J. C. Kaimal and J. J. Finnigan, Atmospheric Boundary Layer flows: Their Structure and Measurement (Oxford University Press, Oxford, 1994).

Google Scholar 

S. P. Oncley, C. Friehe, J. LaRue, J. Businger, E. Itsweire, and S. S. Chang, “Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions,” J. Atmos. Sci. 53 (7), 1029–1044 (1996). https://doi.org/10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2

Article  ADS  Google Scholar 

S. E. Larsen, J. B. Edson, C. W. Fairall, and P. G. Mestayer, “Measurement of temperature spectra by a sonic anemometer,” J. Atmos. Ocean. Technol. 10 (3), 345–354 (1993). https://doi.org/10.1175/1520-0426(1993)010<0345:-MOTSBA>2.0.CO;2

Article  ADS  Google Scholar 

R. D. Kouznetsov and M. Kallistratova, “Anisotropy of a small-scale turbulence in the atmospheric boundary layer and its effect on acoustic backscattering,” in Proc. of the 15th International Symposium for the Advancement of Boundary Layer Remote Sensing (2010).

S. P. Burns, T. W. Horst, L. Jacobsen, P. D. Blanken, and R. N. Monson, “Using sonic anemometer temperature to measure sensible heat flux in strong winds,” Atmos. Meas. Tech. 5 (9), 2095–2111 (2012). https://doi.org/10.5194/amt-5-2095-2012

Article  Google Scholar 

R. A. J. Neggers and A. P. Siebesma, The KNMI Parameterization Testbed. User’s Guide (2010). https://ruisdael-observatory.nl/cesar-database/. Cited April 29, 2024.

J. C. Kaimal and J. E. Gaynor, “The Boulder Atmospheric Observatory,” J. Clim. Appl. Meteorol. 22 (5), 863–880 (1983).

ADS  Google Scholar 

G. S. Poulos, W. Blumen, D. Fritts, J. Lundquist, J. Sun, S. Burns, C. Nappo, R. Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen, “CASES-99: A comprehensive investigation of the stable nocturnal boundary layer,” Bull. Am. Meteorol. Soc. 83 (4), 555–582 (2002). https://doi.org/10.1175/1520-0477(2002)083<0555:C-ACIOT>2.3.CO;2

Article  ADS  Google Scholar 

V. P. Yushkov, “The Hamiltonian formalism and quantum-mechanical analogy in the probabilistic description of turbulence,” Moscow University Phys. Bull. 70 (4), 217–225 (2015). https://doi.org/10.3103/S0027134915040153

Article  ADS  MathSciNet  Google Scholar 

D. Forster, D. R. Nelson, and M. J. Stephen, “Large-distance and long-time properties of a randomly stirred fluid,” Phys. Rev. A: 16 (2), 732–749 (1977). https://doi.org/10.1103/PhysRevA.16.732

Article  ADS  MathSciNet  Google Scholar 

L. Canet, B. Delamotte, and N. Wschebor, “Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution,” Phys. Rev. E: 93 (6), 063101 (2016). https://doi.org/10.1103/PhysRevE.93.063101

Article  ADS  Google Scholar 

K. Hasselmann, “Feynman diagrams and interaction rules of wave-wave scattering processes,” Rev. Geophys. 4 (1), 1–32 (1966). https://doi.org/10.1029/RG004i001p00001

Article  ADS  Google Scholar 

V. E. Zakharov, “The Hamiltonian formalism for waves in nonlinear media having dispersion,” Radiophys. Quantum Electron. 17 (4), 326–343 (1974).

ADS  Google Scholar 

Comments (0)

No login
gif