A. V. Eliseev and I. I. Mokhov, “Greenhouse effect,” in Great Russian Encyclopedia (Coscow, 2014), vol. 25 [in Russian].
Anthropogenic Climate Change, Ed. by M.I. Budyko and Yu.A. Izrael (Gidrometeoizdat, Leningrad, 1987) [in Russian].
I. I. Mokhov, Diagnostics of Climate System Structure (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge University Press, Cambridge; New York, 2007).
B. I. Vasil’ev and U. M. Mannoun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Electron. 36 (9), 801–820 (2006). https://doi.org/10.1070/QE2006v036n09ABEH006577
S. M. Bobrovnikov, G. G. Matvienko, O. A. Romanovskii, I. B. Serikov, and A. Ya. Sukhanov, Lidar Spectroscopic Gas Analysis of the Atmosphere (Publishing House of IAO SB RAS, Tomsk, 2014) [in Russian].
Yu. S. Balin, A. G. Borovoi, V. D. Burlakov, S. I. Dolgii, M. G. Klemasheva, A. V. Konoshonkin, G. P. Kokhanenko, N. V. Kustova, V. N. Marichev, G. G. Matvienko, A. A. Nevzorov, A. V. Nevzorov, I. E. Penner, O. A. Romanovskii, S. V. Samoilova, A. Ya. Sukhanov, O. V. Kharchenko, and V. A. Shishko, Lidar Monitoring of Cloud and Aerosol Fields, Trace Atmospheric Gases, and Weather Parameters, Ed. by G.G. Matvienko (Publishing House of IAO SB RAS, Tomsk, 2015) [in Russian].
A. S. Boreysho, A. A. Kim, M. A. Konyaev, V. S. Luginya, A. V. Morozov, and A. E. Orlov, “Modern lidar systems for atmosphere remote sensing,” Photon. Rus. 13 (7), 648–657 (2019). https://doi.org/10.22184/1992-7296.FRos.2019.13.7.648.657
Y. V. Kistenev, A. Cuisset, O. A. Romanovskii, and A. V. Zherdeva, “A study of trace atmospheric gases at the water – atmosphere interface using remote and local IR laser gas analysis: A review,” Atmos. Ocean. Opt. 35 (S1), S17–S29 (2022).
V. Molebny, P. F. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: Historical prospective—from the east to the west,” Opt. Eng. 56 (3), 031220 (2016). https://doi.org/10.1117/1.OE.56.3.031220
J. Li, Z. Yu, Z. Du, Y. Ji, and C. Liu, “Standoff chemical detection using laser absorption spectroscopy: A review,” Remote Sens. 12, 2771 (2020). https://doi.org/10.3390/rs12172771
O. A. Romanovskii, O. V. Kharchenko, and S. V. Yakovlev, “Methodological aspects of lidar ranging of trace gases in the atmosphere by differential absorption,” J. Appl. Spectrosc. 79, 793–800 (2012). https://doi.org/10.1007/s10812-012-9673-4
U. N. Singh, T. F. Refaat, M. Petros, and S. Ismail, “Evaluation of 2-μm pulsed integrated path differential absorption lidar for carbon dioxide measurement—technology developments, measurements, and path to space,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (6), 2059–2067 (2018). https://doi.org/10.1109/JSTARS.2017.2777453
Y. Feng, J. Chang, X. Chen, Q. Zhang, Z. Wang, J. Sun, and Z. Zhang, “Application of TDM and FDM methods in TDLAS based multi-gas detection,” Opt. Quantum Electron. 53 (4), 1–11 (2021). https://doi.org/10.1007/s11082-021-02844-9
W. Liang, G. Wei, A. He, and H. Shen, “A novel wavelength modulation spectroscopy in TDLAS,” Infrared Phys. Technol. 114 (33), 103661 (2021). https://doi.org/10.1016/j.infrared.2021.103661
H. Yang, X. Bu, Y. Song, and Y. Shen, “Methane concentration measurement method in rain and fog coexisting weather based on TDLAS,” Measurement, 112091 (2022). https://doi.org/10.1016/j.measurement.2022.112091
U. Platt and J. Stutz, “Differential absorption spectroscopy,” in Differential Optical Absorption Spectroscopy (Springer, Berlin; Heidelberg, 2008).
U. Platt, D. Perner, and H. W. Paetz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84 (C10), 6329–6335 (1979). https://doi.org/10.1029/JC084iC10p06329
O. Romanovskii, A. Sukhanov, O. Kharchenko, S. Yakovlev, and S. Sadovnikov, “Simulation of remote atmospheric sensing by a laser system based on optical parametric oscillator,” Inform. Control Syst. 5, 71–79 (2017). https://doi.org/10.15217/issn1684-8853.2017.5.71
G. G. Matvienko, O. A. Romanovskii, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, “DIAL-DOAS technique for laser sounding of the gaseous composition of the atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 1003558 (2016). https://doi.org/10.1117/12.2254779
V. I. Grigorievsky, D. M. Kalenov, V. P. Sadovnikov, Ya. A. Tezadov, and A. V. Elbakidze, “Lidar monitoring of background methane concentration in the north-east of the Moscow region,” Zhurn. Radioelektron, No. 11 (2023). https://doi.org/10.30898/1684-1719.2023.11.3
V. S. Ayrapetyan and P. A. Fomin, “Laser detection of explosives based on differential absorption and scattering,” Opt. Laser Technol. 106, 202–208 (2018). https://doi.org/10.1016/j.optlastec.2018.04.001
O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Broadband IR lidar for gas analysis of the atmosphere,” J. Appl. Spectrosc. 85 (3), 457–461 (2018). https://doi.org/10.1007/s10812-018-0672-y
O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Near/mid-IR OPO lidar system for gas analysis of the atmosphere: Simulation and measurement results,” Opt. Memory Neural Networks (Information Optics) 28 (1), 1–10 (2019). https://doi.org/10.3103/S1060992X19010053
O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Development of near/mid IR differential absorption OPO lidar system for sensing of atmospheric gases,” Opt. Laser Technol. 116, 43–47 (2019). https://doi.org/10.1016/j.optlastec.2019.03.011
A. Yerasi, W. D. Tandy, W. J. Emery, and R. A. Barton-Grimley, “Comparing the theoretical performances of 1.65- and 3.3-μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks,” J. Appl. Remote Sens. 12 (2), 026030 (2018). https://doi.org/10.1117/1.JRS.12.026030
L. Meng, A. Fix, M. Wirth, L. Hogstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26, 3850–3860 (2018). https://doi.org/10.1364/OE.26.003850
A. Amediek, G. Ehret, A. Fix, M. Wirth, Ch. Budenbender, M. Quatrevalet, Ch. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: Measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017). https://doi.org/10.1364/AO.56.005182
G. A. Wagner and D. F. Plusquellic, “Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm,” Appl. Opt. 55, 6292–6310 (2016). https://doi.org/10.1364/AO.55.006292
V. I. Grigorievsky, V. P. Sadovnikov, and A. V. Elbakidze, “Measurements of the background methane concentration with a remote lidar on kilometer routes in the Moscow region,” Zh. Radioelektron., No. 9 (2021). https://doi.org/10.30898/1684-1719.2021.9.10
V. I. Grigorievsky and Y. A. Tezadov, “Modeling and experimental study of lidar resolution to determine methane concentration in the Earth’s atmosphere,” Cosmic Res. 58, 330–337 (2020). https://doi.org/10.1134/S0010952520050020
O. Kara, F. Sweeney, M. Rutkauskas, C. Farrell, C. G. Leburn, and D. T. Reid, “Open-path multi-species remote sensing with a broadband optical parametric oscillator,” Opt. Express 27, 21 358–21 366 (2019). https://doi.org/10.1364/OE.27.021358
S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0–3.45 nm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015). https://doi.org/10.1016/j.optlastec.2015.04.007
O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Remote analysis of methane concentration in the atmosphere with an IR lidar system in the 3300–3430 nm spectral range,” Atmos. Ocean. Opt. 33 (2), 188–194 (2020).
Y. Shibata, C. Nagasawa, M. Abo, M. Inoue, I. Morino, and O. Uchino, “Comparison of CO2 vertical profiles in the lower troposphere between 1.6 μm differential absorption lidar and aircraft measurements over Tsukuba,” Sensors 18, 4064 (2018). https://doi.org/10.3390/s18114064
I. Robinson, J. W. Jack, C. F. Rae, and J. B. Moncrieff, “Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide,” Proc. SPIE—Int. Soc. Opt. Eng. 9246, 92460 (2014). https://doi.org/10.1117/12.2068023
I. Robinson, J. Jack, C. Rae, and J. Moncrieff, “A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases,” Proc. SPIE—Int. Soc. Opt. Eng. 9645 (2015). https://doi.org/10.1117/12.2197251
T. F. Refaat, M. Petros, U. N. Singh, C. Antill, T.-H. Wong, R. Remus, K. Reithmaier, J. Lee, S. Bowen, B. Taylor, A. Welters, S. Ismail, and A. Noe, " Airborne, direct-detection, 2-um triple-pulse IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide active remote sensing,” Proc. SPIE 10779, 1077902-1–1077902-12 (2018). https://doi.org/10.1117/12.2324785
S. Lambert-Girard, M. Allard, M. Piche, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54 (7), 1647–1656 (2015). https://doi.org/10.1364/AO.54.00164
L. Hogstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24, 5152–5161 (2016). https://doi.org/10.1364/OE.24.005152
B. Yue, S. Yu, M. Li, T. Wei, J. Yuan, Z. Zhang, J. Dong, Y. Jiang, Y. Yang, Z. Gao, and H. Xia, “Local-scale horizontal CO2 flux estimation incorporating differential absorption lidar and coherent Doppler wind lidar,” Remote Sens. 14, 5150 (2022). https://doi.org/10.3390/rs14205150
Comments (0)