Ground-based Stationary Differential Absorption Lidars for Monitoring Greenhouse Gases in the Atmosphere

A. V. Eliseev and I. I. Mokhov, “Greenhouse effect,” in Great Russian Encyclopedia (Coscow, 2014), vol. 25 [in Russian].

Google Scholar 

Anthropogenic Climate Change, Ed. by M.I. Budyko and Yu.A. Izrael (Gidrometeoizdat, Leningrad, 1987) [in Russian].

Google Scholar 

I. I. Mokhov, Diagnostics of Climate System Structure (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].

Google Scholar 

Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge University Press, Cambridge; New York, 2007).

Google Scholar 

B. I. Vasil’ev and U. M. Mannoun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Electron. 36 (9), 801–820 (2006). https://doi.org/10.1070/QE2006v036n09ABEH006577

Article  ADS  Google Scholar 

S. M. Bobrovnikov, G. G. Matvienko, O. A. Romanovskii, I. B. Serikov, and A. Ya. Sukhanov, Lidar Spectroscopic Gas Analysis of the Atmosphere (Publishing House of IAO SB RAS, Tomsk, 2014) [in Russian].

Google Scholar 

Yu. S. Balin, A. G. Borovoi, V. D. Burlakov, S. I. Dolgii, M. G. Klemasheva, A. V. Konoshonkin, G. P. Kokhanenko, N. V. Kustova, V. N. Marichev, G. G. Matvienko, A. A. Nevzorov, A. V. Nevzorov, I. E. Penner, O. A. Romanovskii, S. V. Samoilova, A. Ya. Sukhanov, O. V. Kharchenko, and V. A. Shishko, Lidar Monitoring of Cloud and Aerosol Fields, Trace Atmospheric Gases, and Weather Parameters, Ed. by G.G. Matvienko (Publishing House of IAO SB RAS, Tomsk, 2015) [in Russian].

Google Scholar 

A. S. Boreysho, A. A. Kim, M. A. Konyaev, V. S. Luginya, A. V. Morozov, and A. E. Orlov, “Modern lidar systems for atmosphere remote sensing,” Photon. Rus. 13 (7), 648–657 (2019). https://doi.org/10.22184/1992-7296.FRos.2019.13.7.648.657

Article  Google Scholar 

Y. V. Kistenev, A. Cuisset, O. A. Romanovskii, and A. V. Zherdeva, “A study of trace atmospheric gases at the water – atmosphere interface using remote and local IR laser gas analysis: A review,” Atmos. Ocean. Opt. 35 (S1), S17–S29 (2022).

ADS  Google Scholar 

V. Molebny, P. F. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: Historical prospective—from the east to the west,” Opt. Eng. 56 (3), 031220 (2016). https://doi.org/10.1117/1.OE.56.3.031220

Article  ADS  Google Scholar 

J. Li, Z. Yu, Z. Du, Y. Ji, and C. Liu, “Standoff chemical detection using laser absorption spectroscopy: A review,” Remote Sens. 12, 2771 (2020). https://doi.org/10.3390/rs12172771

Article  ADS  Google Scholar 

O. A. Romanovskii, O. V. Kharchenko, and S. V. Yakovlev, “Methodological aspects of lidar ranging of trace gases in the atmosphere by differential absorption,” J. Appl. Spectrosc. 79, 793–800 (2012). https://doi.org/10.1007/s10812-012-9673-4

Article  ADS  Google Scholar 

U. N. Singh, T. F. Refaat, M. Petros, and S. Ismail, “Evaluation of 2-μm pulsed integrated path differential absorption lidar for carbon dioxide measurement—technology developments, measurements, and path to space,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (6), 2059–2067 (2018). https://doi.org/10.1109/JSTARS.2017.2777453

Article  ADS  Google Scholar 

Y. Feng, J. Chang, X. Chen, Q. Zhang, Z. Wang, J. Sun, and Z. Zhang, “Application of TDM and FDM methods in TDLAS based multi-gas detection,” Opt. Quantum Electron. 53 (4), 1–11 (2021). https://doi.org/10.1007/s11082-021-02844-9

Article  Google Scholar 

W. Liang, G. Wei, A. He, and H. Shen, “A novel wavelength modulation spectroscopy in TDLAS,” Infrared Phys. Technol. 114 (33), 103661 (2021). https://doi.org/10.1016/j.infrared.2021.103661

Article  Google Scholar 

H. Yang, X. Bu, Y. Song, and Y. Shen, “Methane concentration measurement method in rain and fog coexisting weather based on TDLAS,” Measurement, 112091 (2022). https://doi.org/10.1016/j.measurement.2022.112091

U. Platt and J. Stutz, “Differential absorption spectroscopy,” in Differential Optical Absorption Spectroscopy (Springer, Berlin; Heidelberg, 2008).

Google Scholar 

U. Platt, D. Perner, and H. W. Paetz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84 (C10), 6329–6335 (1979). https://doi.org/10.1029/JC084iC10p06329

Article  ADS  Google Scholar 

O. Romanovskii, A. Sukhanov, O. Kharchenko, S. Yakovlev, and S. Sadovnikov, “Simulation of remote atmospheric sensing by a laser system based on optical parametric oscillator,” Inform. Control Syst. 5, 71–79 (2017). https://doi.org/10.15217/issn1684-8853.2017.5.71

Article  Google Scholar 

G. G. Matvienko, O. A. Romanovskii, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, “DIAL-DOAS technique for laser sounding of the gaseous composition of the atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 1003558 (2016). https://doi.org/10.1117/12.2254779

V. I. Grigorievsky, D. M. Kalenov, V. P. Sadovnikov, Ya. A. Tezadov, and A. V. Elbakidze, “Lidar monitoring of background methane concentration in the north-east of the Moscow region,” Zhurn. Radioelektron, No. 11 (2023). https://doi.org/10.30898/1684-1719.2023.11.3

V. S. Ayrapetyan and P. A. Fomin, “Laser detection of explosives based on differential absorption and scattering,” Opt. Laser Technol. 106, 202–208 (2018). https://doi.org/10.1016/j.optlastec.2018.04.001

Article  ADS  Google Scholar 

O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Broadband IR lidar for gas analysis of the atmosphere,” J. Appl. Spectrosc. 85 (3), 457–461 (2018). https://doi.org/10.1007/s10812-018-0672-y

Article  ADS  Google Scholar 

O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Near/mid-IR OPO lidar system for gas analysis of the atmosphere: Simulation and measurement results,” Opt. Memory Neural Networks (Information Optics) 28 (1), 1–10 (2019). https://doi.org/10.3103/S1060992X19010053

Article  Google Scholar 

O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Development of near/mid IR differential absorption OPO lidar system for sensing of atmospheric gases,” Opt. Laser Technol. 116, 43–47 (2019). https://doi.org/10.1016/j.optlastec.2019.03.011

Article  ADS  Google Scholar 

A. Yerasi, W. D. Tandy, W. J. Emery, and R. A. Barton-Grimley, “Comparing the theoretical performances of 1.65- and 3.3-μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks,” J. Appl. Remote Sens. 12 (2), 026030 (2018). https://doi.org/10.1117/1.JRS.12.026030

Article  ADS  Google Scholar 

L. Meng, A. Fix, M. Wirth, L. Hogstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26, 3850–3860 (2018). https://doi.org/10.1364/OE.26.003850

Article  ADS  Google Scholar 

A. Amediek, G. Ehret, A. Fix, M. Wirth, Ch. Budenbender, M. Quatrevalet, Ch. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: Measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017). https://doi.org/10.1364/AO.56.005182

Article  ADS  Google Scholar 

G. A. Wagner and D. F. Plusquellic, “Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm,” Appl. Opt. 55, 6292–6310 (2016). https://doi.org/10.1364/AO.55.006292

Article  ADS  Google Scholar 

V. I. Grigorievsky, V. P. Sadovnikov, and A. V. Elbakidze, “Measurements of the background methane concentration with a remote lidar on kilometer routes in the Moscow region,” Zh. Radioelektron., No. 9 (2021). https://doi.org/10.30898/1684-1719.2021.9.10

V. I. Grigorievsky and Y. A. Tezadov, “Modeling and experimental study of lidar resolution to determine methane concentration in the Earth’s atmosphere,” Cosmic Res. 58, 330–337 (2020). https://doi.org/10.1134/S0010952520050020

Article  ADS  Google Scholar 

O. Kara, F. Sweeney, M. Rutkauskas, C. Farrell, C. G. Leburn, and D. T. Reid, “Open-path multi-species remote sensing with a broadband optical parametric oscillator,” Opt. Express 27, 21 358–21 366 (2019). https://doi.org/10.1364/OE.27.021358

Article  Google Scholar 

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0–3.45 nm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015). https://doi.org/10.1016/j.optlastec.2015.04.007

Article  ADS  Google Scholar 

O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Remote analysis of methane concentration in the atmosphere with an IR lidar system in the 3300–3430 nm spectral range,” Atmos. Ocean. Opt. 33 (2), 188–194 (2020).

Google Scholar 

Y. Shibata, C. Nagasawa, M. Abo, M. Inoue, I. Morino, and O. Uchino, “Comparison of CO2 vertical profiles in the lower troposphere between 1.6 μm differential absorption lidar and aircraft measurements over Tsukuba,” Sensors 18, 4064 (2018). https://doi.org/10.3390/s18114064

Article  ADS  Google Scholar 

I. Robinson, J. W. Jack, C. F. Rae, and J. B. Moncrieff, “Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide,” Proc. SPIE—Int. Soc. Opt. Eng. 9246, 92460 (2014). https://doi.org/10.1117/12.2068023

I. Robinson, J. Jack, C. Rae, and J. Moncrieff, “A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases,” Proc. SPIE—Int. Soc. Opt. Eng. 9645 (2015). https://doi.org/10.1117/12.2197251

T. F. Refaat, M. Petros, U. N. Singh, C. Antill, T.-H. Wong, R. Remus, K. Reithmaier, J. Lee, S. Bowen, B. Taylor, A. Welters, S. Ismail, and A. Noe, " Airborne, direct-detection, 2-um triple-pulse IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide active remote sensing,” Proc. SPIE 10779, 1077902-1–1077902-12 (2018). https://doi.org/10.1117/12.2324785

S. Lambert-Girard, M. Allard, M. Piche, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54 (7), 1647–1656 (2015). https://doi.org/10.1364/AO.54.00164

Article  ADS  Google Scholar 

L. Hogstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24, 5152–5161 (2016). https://doi.org/10.1364/OE.24.005152

Article  ADS  Google Scholar 

B. Yue, S. Yu, M. Li, T. Wei, J. Yuan, Z. Zhang, J. Dong, Y. Jiang, Y. Yang, Z. Gao, and H. Xia, “Local-scale horizontal CO2 flux estimation incorporating differential absorption lidar and coherent Doppler wind lidar,” Remote Sens. 14, 5150 (2022). https://doi.org/10.3390/rs14205150

Article  ADS 

Comments (0)

No login
gif