V. G. Astafurov, A. V. Skorokhodov, and K. V. Kurya-novich, “Variability of parameters of single-layer cloud fields over Western Siberia in summer for the period from 2001 to 2019 according to MODIS data,” Atmos. Ocean. Opt. 36 (4), 329–336 (2023).
V. G. Astafurov, A. V. Skorokhodov, and K. V. Kurya-novich, “Variability of parameters of single-layer cloud fields over Western Siberia in winter in 2001-2019 according to MODIS data,” Atmos. Ocean. Opt. 37 (2), 211–219 (2024).
V. P. Gorbatenko, I. I. Ippolitov, and N. V. Podnebesnykh, “Atmospheric circulation over Western Siberia in 1976–2004,” Russ. Meteorol. Hydrol. 32 (5), 301–306 (2007).
E. L. Tunaev, V. P. Gorbatenko, and N. V. Podnebesnykh, “Distinctive features of cyclogenesis over the territory of Western Siberia during 1976–2015,” Trudy Gidrometeorologicheskogo Nauchno-Issledovatel’skogo Tsentra Rossiiskoi Federatsii, No. 364, 81–92 (2017).
E. V. Kharyutkina, S. V. Loginov, E. I. Usova, and Yu. V. Martynova, “Tendencies in changes of climate extremality in Western Siberia at the end of the XX century and the beginning of the XXI century,” Fundam. Prikl. Klimatol. 2, 45–65 (2019). https://doi.org/10.21513/2410-8758-2019-2-45-65
Land Surface Temperature Anomaly. 2000–2024. https://earthobservatory.nasa.gov/global-maps/MOD_LSTAD_M. Cited November 18, 2024.
X. Jing, H. Zhang, J. Peng, J. Li, and H. W. Barker, “Cloud overlapping parameter obtained from CloudSat/CALIPSO dataset and its application in AGCM with McICA scheme,” Atmos. Res. 170, 52–65 (2016). doi 0169-8095https://doi.org/10.1016/j.atmosres.2015.11.007
E. Johansson, A. Devasthale, A. M. L. Ekman, M. Tjernstrom, and T. L’Ecuyer, “How does cloud overlap affect the radiative heating in the tropical upper troposphere/lower stratosphere?,” Geophys. Rev. Lett. 46, 5623–5631 (2019). https://doi.org/10.1029/019GL082602
H. Luo, J. Quaas, and Y. Han, “Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios,” Atmos. Chem. Phys. 23 (14), 8169–8186 (2023). https://doi.org/10.5194/acp-23-8169-2023
L. Oreopoulos, N. Cho, and D. Lee, “New insights about cloud vertical structure from CloudSat and CALIPSO observations,” J. Geophys. Res.: Atmos. 122, 9280–9300 (2017). https://doi.org/10.1002/2017JD026629
Interim Guidelines for the Use of DMRL-S Doppler Meteorological Radar Data in Synoptic Practice, Ed. by Yu.B. Pavlyukov, N.I. Serebryannik, S.G. Belikov, (Roshydromet, Moscow, 2017) [in Russian]
G. P. Kokhanenko, Y. S. Balin, M. G. Klemasheva, S. V. Nasonov, M. M. Novoselov, I. E. Penner, and S. V. Samoilova, “Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers,” Atmos. Meas. Tech. 13 (3), 1113–1127 (2020). https://doi.org/10.5194/amt-13-1113-2020
I. V. Chernykh and O. A. Aldukhov, “Estimating the number of cloud layers through radiosonde data from Russian aerological stations for 1964–2014,” Russ. Meteorol. Hydrol. 43 (3), 152–160 (2018).
I. V. Chernykh and O. A. Aldukhov, “Long-term estimates of the number of cloud layers from radiosonde data for 1964–2017 in different latitudinal zones,” Russ. Meteorol. Hydrol. 45 (4), 227–238 (2020).
A. Arking and J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Appl. Meteorol. Climatol. 24 (4), 322–333 (1985). https://doi.org/10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2
M. Min, J. Li, F. Wang, Z. Liu, and W. P. Menzel, “Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms,” Remote Sens. Environ. 239 (2020). https://doi.org/10.1016/j.rse.2019.111616
C. Y. Liu, C. H. Chiu, P. H. Lin, and M. Min, “Comparison of cloud-top property retrievals from advanced Himawari imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP and radiosonde,” J. Geophys. Res.: Atmos. 125 (15) (2020). https://doi.org/10.1029/2020JD032683
N. Zakhvatkina, V. Smirnov, and I. Bychkova, “Satellite SAR data-based sea ice classification: An overview,” Geosci. 9 (4) (2019). https://doi.org/10.3390/geosciences9040152
S. Tanelli, S. Durden, E. Im, K. Pak, D. G. Reinke, P. Partain, J. Haynes, and R. Marchand, “CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing,” IEEE Trans. Geosci. Remote Sens. 46 (11), 3560–3573 (2008). https://doi.org/10.1109/TGRS.2008.2002030
D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, and K. A. Powell, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009). https://doi.org/10.1175/2009JTECHA1281.1
C. J. Stubenrauch, S. Cros, A. Guignard, and N. Lamquin, “A 6-year global cloud climatology from the atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat,” Atmos. Chem. Phys. 10, 7197–7214 (2010). https://doi.org/10.5194/acp-10-7197-2010
W. B. Rossow and Y. Zhang, “Evaluation of a statistical model of cloud vertical structure using combined CloudSat and CALIPSO cloud layer profiles,” J. Clim. 23 (24), 6641–6653 (2010). https://doi.org/10.1175/2010JCLI3734.1
B. Koffi, M. Schulz, F.-M. Breon, J. Griesfeller, D. Winker, Y. Balkanski, S. Bauer, T. Berntsen, M. Chin, W. D. Collins, F. Dentener, T. Diehl, R. Easter, S. Ghan, P. Ginoux, S. Gong, L. W. Horowitz, T. Iversen, A. Kirkevag, D. Koch, M. Krol, G. Myhre, Ph. Stier, and T. Takemura, “Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results,” J. Geophys. Res. 117 (2012).https://doi.org/10.1029/2011JD016858
J. Li, J. Huang, K. Stamnes, T. Wang, Q. Lv, and H. Jin, “A global survey of cloud overlap based on CALIPSO and CloudSat measurements,” Atmos. Chem. Phys. 15 (1), 519–536 (2015). https://doi.org/10.5194/acp-15-519-2015
Q. Li and S. Groß, “Satellite observations of seasonality and long-term trends in cirrus cloud properties over Europe: Investigation of possible aviation impacts,” Atmos. Chem. Phys. 22, 15963–15980 (2022). https://doi.org/10.5194/acp-22-15963-2022
Q. Song, Z. Zhang, H. Yu, P. Ginoux, and J. Shen, “Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: Regional and interannual variability,” Atmos. Chem. Phys. 21, 13 369–13 395 (2021). https://doi.org/10.5194/acp-21-13369-2021
B. M. Portella and H. M. J. Barbosa, “Climatology and trends of cirrus geometrical and optical properties in the Amazon Region from 7-yr of CALIPSO observations,” Atmos. Res. 299 (2024). https://doi.org/10.1016/j.atmosres.2023.107167
A. V. Skorokhodov, K. N. Pustovalov, E. V. Kharyutkina, and V. G. Astafurov, “Cloud-base height retrieval from MODIS satellite data based on self-organizing neural networks,” Atmos. Ocean. Opt. 36 (6), 723–734 (2023).
Z. Wang, CloudSat 2B-CLDCLASS-LIDAR Product Process Description and Interface Control Document (Colorado State University, Colorado, 2019).
Handbook on Clouds and Cloudy Atmosphere, Ed. by I.P. Mazin and A.Kh. Khrgian (Gidrometeoizdat, Gidrometeoizdat, 1989) [in Russian].
V. G. Astafurov, A. V. Skorokhodov, and K. V. Kur’yanovich, “Summer statistical models of cloud parameters over Western Siberia according to MODIS data,” Russ. Meteorol. Hydrol. 46 (11), 735–746 (2021).
T. Wehr, T. Kubota, G. Tzeremes, K. Wallace, H. Nakatsuka, Y. Ohno, R. Koopman, S. Rusli, M. Kikuchi, M. Eisinger, T. Tanaka, M. Taga, P. Deghaye, E. Tomita, and D. Bernaerts, “The EarthCARE mission—science and system overview,” Atmos. Meas. Tech. 16 (15), 3581–3608 (2023). https://doi.org/10.5194/amt-16-3581-2023
M. M. Loranty, D. A. Heather, H. Kropp, A. C. Talucci, and E. E. Webb, “Siberian ecosystems as drivers of cryospheric climate feedbacks in the terrestrial Arctic,” Front. Clim. 3 (2021). https://doi.org/10.3389/fclim.2021.730943
Y. V. Martynova, N. N. Voropay, and A. A. Matyukhina, “Variability of temporal characteristics of snow cover in Siberia on ground-based data,” Environ. Dyn. Glob. Clim. Change 14 (3), 181–197 (2023). https://doi.org/10.18822/edgcc625771
M. A. Vaughan, D. M. Winker, and D. A. Powell, CALIOP Algorithm Theoretical Basis Document Part 2. Feature Detection and Layer Properties Algorithms (SAIC, Hampton, 2005).
W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, and E. Smith, “ISCCP cloud algorithm intercomparison,” J. Appl. Meteorol. Climatol. 24 (9), 877–903 (1985). https://doi.org/10.1175/1520-0450(1985)024<0887-:ICAI>2.0.CO;2
Report on the Climate Features in the Russian Federation for 2012 (Rosgidromet, Moscow, 2013) [in Russian].
Report on the Climate Features in the Russian Federation for 2016 (Rosgidromet, Moscow, 2017) [in Russian].
Report on the Climate Features in the Russian Federation for 2020 (Rosgidromet, Moscow, 2021) [in Russian].
Report on the Climate Features in the Russian Federation for 2022 (Rosgidromet, Moscow, 2023) [in Russian].
Report on the Climate Features in the Russian Federation for 2023 (Rosgidromet, Moscow, 2024) [in Russian].
Comments (0)