F. J. Lopez-Martinez, G. Gomez and J. M. Garrido-Balsells, “Physical-layer security in free-space optical communications,” IEEE Photonics J. 7, 1–14 (2015). https://doi.org/10.1109/jphot.2015.2402158
M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014). https://doi.org/10.1109/comst.2014.2329501
M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “FSO-based vertical backhaul/fronthaul framework for 5G + wireless networks,” IEEE Commun. Mag. 56, 218–224 (2018). https://doi.org/10.1109/mcom.2017.1600735
J. W. Xu, X. Wang, X. M. Sun, et al., “Method of establishing Channel model in multiple-beam transmission and reception FSO systems,” Chinese J. Laser 39, 164–171 (2012).
H. J. Zhou, “Performance optimization of free space optical communication by segmented threshold,” Telecommunication Engineering 63, 695–699 (2023). https://doi.org/10.20079/j.issn.1001-893x.220622003
A. A. Johnsi and V. Saminadan, “Performance of diversity combining techniques for FSO-MIMO system,” in 2013 International Conference on Communication and Signal Processing (IEEE, 2013), pp. 479–483.
M. Elamassie, S. M. Sait, and M. Uysal, “Finite-SNR diversity gain analysis of FSO systems over gamma-gamma fading channels with pointing errors,” IEEE Communications Letters 25, 1940–1944 (2021). https://doi.org/10.1109/lcomm.2021.3061775
M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Transactions Communications 57, 1119–1128 (2009). https://doi.org/10.1109/tcomm.2009.04.070118
M. Chen, C. Liu, D. Rui, and X. Hao, “Experimental results of atmospheric coherent optical communications with adaptive optics,” Opt. Commun. 434, 91–96 (2019). https://doi.org/10.1016/j.optcom.2018.10.013
M. Abtahi and L. A. Rusch, “Mitigating of scintillation noise in FSO communication links using saturated optical amplifiers,” in MILCOM 2006–2006 IEEE Military Communications Conference (IEEE, 2006), pp. 1–5. https://doi.org/10.1109/MILCOM.2006.302382
Y. Q. Hong, W. Shin, and S. Han, “Performance of scintillation mitigation for linear polarization shift on-off keying transmission in free-space optical communications,” IEEE Access 8, 128954–128960 (2020). https://doi.org/10.1109/access.2020.3009274
C. Zheng, S. Yu, and W. Gu, “A SVM-based processor for free-space optical communication,” in 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication (IEEE, 2015), pp. 30–33. https://doi.org/10.1109/ICEIEC.2015.7284480
Z. K. Li and X. H. Zhao, “BP artificial neural network based wave front correction for sensor-less free space optics communication,” Opt. Commun. 385, 219–228 (2017). https://doi.org/10.1016/j.optcom.2016.10.037
J. P. Xia, M. H. Cao, H. Q. Wang, H. T. Zhou, and Y. Qiu, “Deep learning based signal detection for hybrid modulated Faster-Than-Nyquist optical wireless communication,” in 14th International Conference on Advanced Infocomm Technology (ICAIT) (IEEE, 2022), pp. 107–110. https://doi.org/10.1109/icait56197.2022.9862811
M. H. Cao, R. F. Yao, J. P. Xia, K. J. Jia, and H. Q. Wang, “LSTM attention neural-network-based signal detection for hybrid modulated Faster–Than–Nyquist optical wireless communications,” Sensors 22, 1–13 (2022). https://doi.org/10.3390/s22228992
X. Liu and Y. Q. Hong, “Improved GRU model based atmospheric turbulence compensation technology for FSO communication,” J. Naval Aviation University 40, 101–109 (2024).
M. T. Dabiri and S. M. S. Sadough, “Generalized blind detection of OOK modulation for free-space optical communication,” IEEE Communications Letters 21, 2170–2173 (2017). https://doi.org/10.1109/lcomm.2017.2722472
Q. H. Lv, R. Ma, S. Y. Xiao, et al., “Principles and applications for optical nonlinear activation function devices,” J. Optics 43, 11–29 (2023). https://doi.org/10.3788/aos230903
X. M. Su, G. Wang, and Q. Q. Li, “Prediction method for transformer state based on GRU network,” 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia) (IEEE, 2020), pp. 1751–1755. https://doi.org/10.1109/ICPSAsia48933.2020.9208450
S. Song, Y. J. Liu, T. M. Xu, Sh. Sh. Liao, and L. Guo, “Channel prediction for intelligent FSO transmission system,” Opt. Express 29, 27882–27899 (2021). https://doi.org/10.1364/OE.433493
M. Q. Zhu, S. B. Hu, K. Yang, T. T. Yan, L. Ye, H. J. Li, and Y. Jin, “GMSK demodulation combining 1D-CNN and Bi-LSTM network over strong solar wind turbulence channel,” Radio Sci. 58, 1–15 (2023). https://doi.org/10.1029/2022rs007438
M. A. Amirabadi, M. H. Kahaei, and S. A. Nezamalhosseini, “Deep learning based detection technique for FSO communication systems,” Phys. Commun. 43, 1–18 (2020). https://doi.org/10.1016/j.phycom.2020.101229
D. K. Borah and D. G. Voelz, “Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence,” J. Lightwave Technol. 27, 3965–3973 (2009). https://doi.org/10.1109/jlt.2009.2022771
P. F. Lv, Y. Q. Hong, and Q. W. Jing, “Average SNR based adaptive power transmission technique in FSO links,” J. Naval Aviation University 39, 235–240 (2024). https://doi.org/10.7682/j.issn.2097-1427.2024.02.006
Q. W. Jing, P. Z. Yu, H. L. Lv, and Y. Q. Hong, “Turbulence-tolerant Manchester on-off keying transmission for free-space optical communication,” Curr. Opt. Photonics 7, 345–353 (2023). https://doi.org/10.3807/copp.2023.7.4.345
H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surv. Tutor. 19, 57–96 (2017). https://doi.org/10.1109/comst.2016.2603518
Comments (0)