Phytoplankton Concentration Distribution in the Kara Sea According to Aircraft Laser Sounding Data

B. D. Belan, G. Ancellet, I. S. Andreeva, P. N. Antokhin, V. G. Arshinova, M. Y. Arshinov, Yu. S. Balin, V. E. Barsuk, S. B. Belan, D. G. Chernov, D. K. Davydov, A. V. Fofonov, G. A. Ivlev, S. N. Kotel’nikov, A. S. Kozlov, A. V. Kozlov, K. Law, A. V. Mikhal’chishin, I. A. Moseikin, S. V. Nasonov, Ph. Nedelec, O. V. Okhlopkova, S. E. Ol’kin, M. V. Panchenko, J.-D. Paris, I. E. Penner, I. V. Ptashnik, T. M. Rasskazchikova, I. K. Reznikova, O. A. Romanovskii, A. S. Safatov, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. V. Yakovlev, and P. N. Zenkova, “Integrated airborne investigation of the air composition over the Russian sector of the Arctic,” Atmos. Meas. Tech, No. 15, 3941–3967 (2022). https://doi.org/10.5194/amt-15-3941-2022

Article  Google Scholar 

M. D. Kravchishina, A. A. Klyuvitkin, A. N. Novigatskii, D. I. Glukhovets, V. P. Shevchenko, and B. D. Belan, “89th cruise (1st stage) of the research vessel Akademik Mstislav Keldysh: Climate experiment in interaction with the TU-134 optic flying laboratory,” Okeanologiya 63 (3), 492–495 (2023). https://doi.org/10.31857/S0030157423030073

Article  Google Scholar 

S. Nasonov, Yu. Balin, M. Klemasheva, G. Kokhanenko, M. Novoselov, I. Penner, S. Samoilova, and T. Khodzher, “Mobile aerosol Raman polarizing lidar LOSA-A2 for atmospheric sounding,” Atmosphere, No. 11, 1032 (2020). https://doi.org/10.3390/atmos11101032

R. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Google Scholar 

V. M. Orlov, I. V. Samokhvalov, M. L. Belov, V. S. Shamanaev, V. M. Klimkin, A. V. Belokhvostikov, I. E. Penner, R. G. Safin, and A. B. Yudovskii, Remote Monitoring of Upper Ocean Layer (Nauka, Novosibirsk, 1991) [in Russian].

Google Scholar 

O. A. Bukin, A. N. Pavlov, P. A. Salyuk, S. S. Golik, A. A. Il’in, and A. Yu. Bubnovskii, “Laser technologies of the ocean research,” Opt. Atmos. Okeana 23 (10), 926–934 (2010).

Google Scholar 

O. A. Bukin, V. I. Il’ichev, A. Yu. Maior, A. N. Pavlov, A. G. Stafievskii, and V. A. Tyapkin, “Shipborne underwater-lidar setup for sounding of the upper layer of an ocean,” Atmos. Ocean. Opt. 7 (10), 761–763 (1994).

Google Scholar 

G. P. Kokhanenko, I. E. Penner, and V. S. Shamanaev, “Studies of sea areas with airborne lidar. Part 1. Short paths,” Atmos. Ocean. Opt. 14 (12), 1038–1042 (2001).

Google Scholar 

V. V. Fadeev, ”Remote laser probing of photosynthesizing organisms,” Sov. J. Quantum Electron. 8 (10), 1251–1254 (1978). https://doi.org/10.1070/QE1978v008n10ABEH011047

Article  ADS  Google Scholar 

F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20 (18), 3197–3205 (1981). https://doi.org/10.1364/AO.20.003197

Article  ADS  Google Scholar 

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, " Remote sensing of phytoplankton using laser-induced-fluorescence," Remote Sens. Environ. 45 (1), 43–50 (1993). https://doi.org/10.1016/0034-4257(93)90080-H

Article  ADS  Google Scholar 

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Differential Lidar fluorosensor system used for phytoplankton bloom and seawater quality monitoring in Antarctica,” Int. J. Remote Sens. 22 (2/3), 369–384 (2001). https://doi.org/10.1080/014311601449989

Article  Google Scholar 

G. S. Karabashev, Fluorescence in Ocean (Gidrometeoizdat, Leningrad, 1987) [in Russian].

Google Scholar 

D. N. Klyshko and V. V. Fadeev, “Remote laser sounding of photosynthesizing organisms,” Dokl. Akad. Nauk SSSR 238 (2), 320–323 (1978).

Google Scholar 

S. M. Babichenko, “Laser remote sensing of the European marine environment: LIF technology and applications,” in Remote Sensing of the European Seas, Ch. 2 (Springer, 2008), pp. 189–204. https://doi.org/10.1007/978-1-4020-6772-3_15

Book  Google Scholar 

L. Prieur and Sh. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorbtion of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).

ADS  Google Scholar 

O. A. Bukin, M. S. Permyakov, A. Yu. Maior, A. N. Pavlov, G. V. Skorokhod, V. V. Chekunkova, O. S. Tsareva, and T. I. Tarkhova, “Relation between the parameters of laser-induced fluorescence of seawaters and the seawater type,” Atmos. Ocean. Opt. 13 (11), 936–939 (2000).

Google Scholar 

A. G. Zatsepin, P. O. Zav’yalov, V. V. Kremenetskii, S. G. Poyarkov, and D. M. Solov’ev, “Desalinized surface layer in the Kara Sea,” Okeanologiya 50 (5), 698–708 (2010).

Google Scholar 

K. N. Fedorov, Physical Nature and Structure of Ocean Fronts (Gidrometeoizdat, Leningrad, 1983) [in Russian].

Google Scholar 

A. A. Konik, A. V. Zimin, and O. A. Atadzhanova, “Spatial and temporal variability of the characteristics of the river plume frontal zone in the Kara Sea in the first two decades of the XXI century,” Fund. Appl. Hydrophys. 15 (4), 23–41 (2022). https://doi.org/10.48612/fpg/38mu-zda7-dpep

Article  Google Scholar 

D. I. Glukhovets and Y. A. Goldin, “Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data,” Oceanologia 62 (3), 364–373 (2020). https://doi.org/10.1016/j.oceano.2020.04.002

Article  Google Scholar 

O. V. Kopelevich, I. V. Saling, S. V. Vazyulya, D. I. Glukhovets, S. V. Sheberstov, V. I. Burenkov, P. G. Karalli, and A. V. Yushmanova, Biooptical Characteristics of the Seas Washing the Shores of Western Russia According to Data of Satellite Color Scanners for 1998–2017 (Vash format, Moscow, 2018) [in Russian].

M. Kravchishina, N. Politova, A. Klyuvitkin, A. Lokhov, I. Migdisova, E. Kudryavtseva, I. Penner, A. Ambrosimov, A. Schuka, and A. Novigatsky, “Characterization of suspended particulate matter in the south Kara Sea (Arctic Ocean) in September 2022 as part of the climate experiment,” Proc. SPIE—Int. Soc. Opt. Eng. 12780 (2023). https://doi.org/10.1117/12.2692937

Ocean Optics, Vol. 1 , Physical Ocean Optics, Ed. by A.S. Monin (Nauka, Moscow, 1983) [in Russian].

Google Scholar 

G. P. Kokhanenko, I. E. Penner, V. S. Shamanaev, G. Ladbrook, and A. Scott, “Laser sensing of the Lake Baikal waters,” Atmos. Ocean. Opt. 12 (1), 37–43 (1999).

Google Scholar 

G. P. Kokhanenko, Yu. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Ocean. Opt. 24 (5), 478–486 (2011).

Google Scholar 

O. A. Bukin, M. S. Permyakov, P. A. Salyuk, A. Yu. Maior, D. V. Burov, V. A. Khovanets, S. S. Golik, and E. L. Podoprigora, “Peculiarities of the laser-induced fluorescence spectra of seawater during algae blooming in different regions of the World Ocean,” Atmos. Ocean. Opt. 17 (9), 661–667 (2004).

Google Scholar 

O. A. Bukin, P. A. Salyuk, A. Yu. Maior, and A. N. Pavlov, “Studies of organic matter reproduction in phytoplankton cells by laser-induced fluorescence method,” Atmos. Ocean. Opt. 18 (11), 871–878 (2005).

Google Scholar 

D. Eizenberg and V. Kautsman, Structure and Properties of Water (Gidrometeoizdat, Leningrad, 1975) [in Russian].

Google Scholar 

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114 (1967). https://doi.org/10.1063/1.1711834

Article  ADS  Google Scholar 

D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18 (11), 1732–1745 (1979). doi 1364/AO.18.001732

A. Yu. Bekkiev, T. A. Gogolinskaya, and V. V. Fadeev, “Simultaneous determination of temperature and salinity of seawater by laser Raman spectroscopy,” Dokl. Akad. Nauk SSSR 271 (4), 849–853 (1983).

Google Scholar 

L. Ricciardulli and F. J. Wentz, Remote Sensing Systems ASCAT C-2015 Daily Ocean Vector Winds on 0.25 deg Grid, Version 02.1 (Remote Sensing Systems, Santa Rosa, CA, 2016). www.remss.com. Cited April 10, 2023.

V. K. Pavlov and S. L. Pfirman, “Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution,” Deep Sea Res. Part III 42 (6), 1369–1390 (1995). https://doi.org/10.1016/0967-0645(95)00046-1

Article  ADS  Google Scholar 

K. N. Fedorov and A. I. Ginzburg, “Surface phenomena in the Ocean,” Okeanologiya 26 (1), 5–14 (1986).

Google Scholar 

A. N. Serebryanyi, ”Slick- and suloy generating processes in the sea. Fronts of different origin,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (5), 231–240 (2012).

Google Scholar 

I. V. Saling, S. V. Vazyulya, D. I. Glukhovets, S. V. Sheberstov, and V. I. Burenkov, Atlas of Biooptical Characteristics of Russian Seas Based on Satellite Color Scanner Data. https://optics.ocean.ru. Cited December 16, 2023.

S. V. Vazyulya, O. V. Kopelevich, S. V. Sheberstov, and V. A. Artemiev, “Satellite estimation of the coefficients of CDOM absorption and diffuse attenuation in the White and Kara seas,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (4), 31–41 (2014).

Google Scholar 

E. I. Svergun, A. V. Zimin, O. A. Atadzhanova, A. A. Konik, E. V. Zubkova, and I. E. Kozlov, “Variability of frontal zones and short-period internal waves in the Barents and Kara Seas from satellite observations during the warm period of 2007,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 15 (4), 181–188 (2018).

Google Scholar 

M. Jakobsson, L. A. Mayer, C. Bringensparr, C. F. Castro, R. Mohammad, P. Johnson, T. Ketter, D. Accettella, D. Amblas, L. An, J. E. Arndt, M. Canals, J. L. Casamor, N. Chauche, B. Coakley, S. Danielson, M. Demarte, M.-L. Dickson, B. Dorschel, J. A. Dowdeswell, S. Dreutter, A. C. Fremand, D. Gallant, J. K. Hall, L. Hehemann, H. Hodnesdal, J. Hong, R. Ivaldi, E. Kane, I. Klaucke, D. W. Krawczyk, Y. Kristoffersen, B. R. Kuipers, R. Millan, G. Masetti, M. Morlighem, R. Noormets, M. M. Prescott, M. Rebesco, E. Rignot, I. Semiletov, A. J. Tate, P. Travaglini, I. Velicogna, P. Weatherall, W. Weinrebe, J. K. Willis, M. Wood, Yu. Zarayskaya, T. Zhang, M. Zimmermann, and K. B. Zinglersen, “The International Bathymetric Chart of the Arctic Ocean Version 4.0,” Sci. Data 7, 176 (2020). https://doi.org/10.1038/s41597-020-0520-9

Article  Google Scholar 

K. F. Bowden, Physical Oceanography of Coastal Waters (John Willey & Sons, Somerset, N.Y., 1984).

Google Scholar 

G. V. Yukhnevich and V. V. Volkov, “Stretching vibration band and the structure of liquid water,” Dokl. Akad. Nauk 353 (4), 465–468 (1997).

Google Scholar 

Q. Sun, “The Raman OH stretching bands of liquid water,” Vibrational Spectrosc. 51, 213–217 (2009). https://doi.org/10.1016/j.vibspec.2009.05.002

Article  Google Scholar 

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986).https://doi.org/10.1063/1.451383

D. N. Whiteman, G. E. Walrafen, W.-H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38 (12), 2614–2615 (1999). https://doi.org/10.1364/AO.38.002614

Article  ADS  Google Scholar 

R. A. Horne, Marine Chemistry: The Structure of Water and the Chemistry of the Hydrosphere (Wiley-Interscience, New York, 1969).

Google Scholar 

S. M. Glushkov, I. M. Panchishin, and V. V. Fadeev, “Observation of “anomalous” Raman spectra during water–ice phase transition,” Dokl. Akad. Nauk SSSR 291 (4), 836–839 (1986).

Google Scholar 

S. M. Glushkov, I. M. Panchishin, and V. V. Fadeev, “Algorithms of heterophase water objects remote monitoring,” Opt. Atmos. Okeana 1 (12), 80–86 (1988).

Google Scholar 

N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the Raman scattering spectrum of Ih ice under local laser heating near 0°C,” Opt. Spectrosc. 93, 252–256 (2002). https://doi.org/10.1134/1.1503755

Article  ADS  Google Scholar 

S. M. Pershin, “Observation of an icelike state in supercooled water and its destruction by laser pulses,” Opt. Spectrosc. 95 (4), 585–593 (2003).

ADS  Google Scholar 

Comments (0)

No login
gif