IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Cambridge University Press, Cambridge, United Kingdom; New York, USA, 2021). https://doi.org/10.1017/9781009157896
G. Choudhury and M. Tesche, “Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements,” Atmos. Meas. Tech. 15, 639–654 (2022). https://doi.org/10.5194/amt-15-639-2022
P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, and S. Ramachandran, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res.: Atmos. 119 (16), 9838–9863 (2014). https://doi.org/10.1002/2013JD021411
X. Ma, Z. Huang, S. Qi, J. Huang, S. Zhang, Q. Dong, and X. Wang, “Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations,” Sci. Total Environ. 721, 137699 (2020). https://doi.org/10.1016/j.scitotenv.2020.137699
A. A. Vinogradova and Yu. A. Ivanova, “Atmospheric transport of black carbon to the Russian Arctic from different sources: Winter and summer 2000–2016,” Atmos. Ocean. Opt. 36 (6), 758–766 (2023).
A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, C. R. Trepte, R. A. Ferrare, K. P. Lee, C. A. Hostetler, C. Kittaka, R. R. Rogers, and R. E. Kuehn, “The CALIPSO automated aerosol classification and lidar ratio selection algorithm,” J. Atmos. Ocean. Technol. 26, 1994–2014 (2009). https://doi.org/10.1175/2009JTECHA1231.1
M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of optical characteristics of the tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).
M. V. Panchenko, V. S. Kozlov, V. V. Polkin, S. A. Terpugova, V. V. Polkin, V. N. Uzhegov, D. G. Chernov, V. P. Shmargunov, E. P. Yausheva, and P. N. Zenkova, “Aerosol characteristics in the near-ground layer of the atmosphere of the city of Tomsk in different types of aerosol weather,” Atmosphere 11 (1) (2020). https://doi.org/10.3390/atmos11010020
B. N. Holben, T. I. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998). https://doi.org/10.1016/S0034-4257(98)00031-5
R. Estevan, D. Martinez-Castro, L. Suarez-Salas, A. Moya, and Y. Silva, “First two and a half years of aerosol measurements with an AERONET Sunphotometer at the Huancayo Observatory, Peru,” Atmos. Environ. X 3, 100037 (2019). https://doi.org/10.1016/j.aeaoa.2019.100037
S. Verma, D. Prakash, P. Ricaud, S. Payra, J. L. Attie, and M. A. Soni, “New classification of aerosol sources and types as measured over Jaipur, India,” Aerosol Air Qual. Res. 15, 985–993 (2015). https://doi.org/10.4209/aaqr.2014.07.0143
B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Van Castle, A. Setser, B. Markham, B. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET,” J. Geophys. Res. 106 (D11), 12 067–12 097 (2001). https://doi.org/10.1029/2001JD900014
P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10 (3), 1155–1169 (2010). https://doi.org/10.5194/acp-10-1155-2010
D. M. Giles, B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer, “An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions,” J. Geophys. Res. 117 (D17) (2012). https://doi.org/10.1029/2012JD018127
J. Lee, J. Kim, C. H. Song, S. B. Kim, Y. Chun, B. J. Sohn, and B. N. Holben, “Characteristics of aerosol types from AERONET sunphotometer measurements,” Atmos. Environ. 44 (26), 3110–3117 (2010). https://doi.org/10.1016/j.atmosenv.2010.05.035
S. Tiwari, A. K. Srivastava, A. K. Singh, and S. Singh, “Identification of aerosol types over Indo-Gangetic basin: Implications to optical properties and associated radiative forcing,” Environ. Sci. Pollut. Res. 22, 12246–12260 (2015). https://doi.org/10.1007/s11356-015-4495-6
O. Dubovik and M. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. D 105 (16), 20 673–20 696 (2000). https://doi.org/10.1029/2000JD900282
B. N. Holben, T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik, “Aeronet’s Version 2.0 quality assurance criteria,” Remote Sens. Atmos. Clouds 6408 (2006). https://doi.org/10.1117/12.706524
D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009). https://doi.org/10.1175/2009JTECHA1281.1
M. H. Kim, A. H. Omar, J. L. Tackett, M. A. Vaughan, D. M. Winker, C. R. Trepte, Y. Hu, Z. Liu, L. R. Poole, M. C. Pitts, J. Kar, and B. E. Magill, “The CALIPSO Version 4 automated aerosol classification and lidar ratio selection algorithm,” Atmos. Meas. Tech. 11 (11), 6107–6135 (2018). https://doi.org/10.5194/amt-11-6107-2018
A. H. Omar, J.-G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of AERosol RObotic NETwork (AERONET) measurements,” J. Geophys. Res. 110, 14 (2005). https://doi.org/10.1029/2004JD004874
E. S. Nagovitsyna, S. K. Dzholumbetov, A. A. Karasev, and V. A. Poddubny, “A regional aerosol model for the middle urals based on CALIPSO measurements,” Atmosphere 15 (1) (2024). https://doi.org/10.3390/atmos15010048
V. A. Poddubnyi, A. P. Luzhetskaya, Yu. I. Markelov, S. A. Beresnev, S. Yu. Gorda, and S. M. Sakerin, “Features of optical characteristics of atmospheric aerosol in the Middle Urals,” Izv., Atmos. Ocean. Phys. 49 (3), 285–293 (2013). https://doi.org/10.7868/S0002351513030103
A. P. Luzhetskaya, E. S. Nagovitsyna, and V. A. Poddubny, “Impact of meteorological parameters on the daily variability of the ground-level PM2.5 concentrations according to measurements in the Middle Urals,” Geography, Environment, Sustainability 16 (4), 172–179 (2023). https://doi.org/10.24057/2071-9388-2023-2824
A. Angstrom, “On the atmospheric transmission of sun radiation and on dust in the air,” Georg. Ann., No. 11, 156–166 (1929).
J. Gasteiger and M. Wiegner, “MOPSMAP V1.0: A versatile tool for the modeling of aerosol optical properties,” Geosci. Model Dev. 11, 2739–2762 (2018). https://doi.org/10.5194/gmd-11-2739-2018
J. Jin, B. Henzing, and A. Segers, “How aerosol size matters in Aerosol Optical Depth (AOD) assimilation and the optimization using the angstrom exponent,” Atmos. Chem. Phys. 23 (2), 1641–1660 (2023). https://doi.org/10.5194/acp-23-1641-2023
A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, “NOAA’S HYSPLIT atmospheric transport and dispersion modeling system,” Bull. Am. Meteorol. Soc. 96 (12), 2059–2077 (2015). https://doi.org/10.1175/BAMS-D-14-00110.1
J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability (1967), vol. 1, pp. 281–297.
Comments (0)