V. Masson-Delmotte, P. Zhai, H. O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, An IPCC Special Report on the Impacts of Global Warming of 1.5 ° C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (Cambridge University Press, Cambridge, UK; New York, USA, 2022)
J. Ju, J. P. Dunne, E. Shevliakoka, P. Ginox, S. Malyshevs, J. G. John, and J. P. Krasting, “Increased risk of the 2019 Alaskan July fires due to anthropogenic activity,” Bull. Am. Meteorol. Soc. 102 (1) (2021). https://doi.org/10.1175/BAMS-D-20-0154.1
I. I. Mokhov and I. A. Gorchakova, “Radiation and temperature effects of summer fires in 2002 in the Moscow Region,” Dokl. Earth Sci. 400 (1), 160–163 (2005).
N. Chubarova, Y. Nezval’, M. Sviridenkov, A. Smirnov, and I. Slutsker, “Smoke aerosol and its radiative effects during extreme fire event over central Russia in summer 2010,” Atmos. Meas. Tech. Discuss. 4, 6351–6386 (2011). https://doi.org/10.5194/amt-5-557-2012
M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Russ. Meteorol. Hydrol. 41 (2), 104–111 (2016).
T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech. 10, 179–198 (2017). https://doi.org/10.5194/amt-10-179-2017
M. Yu. Arshinov and B. D. Belan, “Study of the aerosol size distribution during spring haze and biomass burning events,” Opt. Atmos. Okeana 24 (6), 468–474 (2011).
V. G. Bondur and A. S. Ginzburg, “Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring,” Dokl. Earth Sci. 466 (2), 148–152 (2016).
A. A. Vinogradova, N. S. Smirnov, and V. N. Korotkov, “Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic,” Atmos. Ocean. Opt. 29 (5), 545–550 (2016).
V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014). https://doi.org/10.1080/01431161.2014.945010
G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchkova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014). https://doi.org/10.1080/01431161.2014.945008
G. I. Gorchakov, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Eurasian large-scale hazes in summer 2016,” Izv., Atmos. Ocean. Phys. 55 (3), 261–270 (2019).
G. I. Gorchakov, R. A. Gushchin, V. M. Kopeikin, A. V. Karpov, E. G. Semutnikova, O. I. Datsenko, and T. Ya. Ponomareva, “Anomalous absorption of smoke aerosol in the visible and near-infrared regions of the spectrum,” Dokl. Earth Sci. 510 (1), 92–98 (2023). https://doi.org/10.1134/s1028334x23600214
G. I. Gorchakov, V. M. Kopeikin, R. A. Gushchin, A. V. Karpov, E. G. Semutnikova, O. I. Datsenko, and T. Ya. Ponomareva, “Anomalous selective absorption of smoke aerosol during forest fires in Alaska in July–August 2019,” Izv., Atmos. Ocean. Phys. 59 (6), 740–753 (2023). https://doi.org/10.1134/s000143382306004x
B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998). https://doi.org/10.1016/S0034-4257(98)00031-5
A. Sinyuk, B. N. Holben, T. F. Eck, D. M. Giles, I. Slutsker, S. Korkin, J. S. Schafer, A. Smirnov, M. Sorokin, and A. Lyapustin, “The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2,” Atmos. Meas. Tech. 13, 3375–3411 (2020). https://doi.org/10.5194/amt-13-3375-2020
A. M. Sayer, N. C. Hsu, T. F. Eck, A. Smirnov, and B. N. Holben, “AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth,” Atmos. Chem. Phys. 14 (20), 11493–11523 (2014). https://doi.org/10.5194/acp-14-11493-2014
V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].
Y. Feng, V. Ramanathan, and V. R. Kotamarthi, “Brown carbon: A significant atmospheric absorber of solar radiation?,” Atmos. Chem. Phys. 13 (17), 8607–8621 (2013). https://doi.org/10.5194/acp-13-8607-2013
G. I. Gorchakov, K. S. Verichev, A. V. Karpov, E. G. Semutnikova, and A. V. Vasiliev, “Finely dispersed brown carbon in a smoggy atmosphere,” Dokl. Earth Sci. 471 (1), 1158–1163 (2016).
G. I. Gorchakov, A. V. Karpov, N. V. Pankratova, E. G. Semutnikova, A. V. Vasil’ev, and I. A. Gorchakova, “Brown carbon and black carbon in smoke-filled atmosphere during boreal forest fires,” Issled. Zemli Kosmosa, No. 3, 11–21 (2017). https://doi.org/10.7868/S0205961417030034
D. T. Alexander, P. A. Crozier, and J. R. Anderson, “Brown carbon spheres in East Asian outflow and their optical properties,” Science 321, 833–836 (2008). https://doi.org/10.1126/science.1155296
T. F. Eck, B. N. Holben, J. S. Reid, A. Sinyuk, E. J. Hyer, N. T. O’Neill, G. E. Shaw, CastleJ. R. Vande, F. S. Chapin, O. Dubovik, and A. Smirnov, “Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site,” J. Geophys. Res: Atmos. 16 (114), D11208 (2009). https://doi.org/10.1029/2008JD010870
O. Torres, C. Ahn, and Z. Chen, “Improvements to the OMI near UV aerosol algorithm using A-train CALIOP and AIRS observations,” Atmos. Meas. Tech. Discuss. 6 (3), 5621–5652 (2013). doi , 2013https://doi.org/10.5194/amt-6-3257-2013
T. C. Bond, S. J. Doherty, D. V. Fahey, and P. M. Forster, “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res. 118, 5380–5552 (2013). https://doi.org/10.1002/jgrd.50171
I. B. Konovalov, D. A. Lvova, M. Beekmann, H. Jethva, E. F. Mikhailov, J.-D. Paris, B. D. Belan, V. S. Kozlov, P. Ciais, and M. O. Andreae, “Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths,” Atmos. Chem. Phys. 18, 14889–14924 (2018). https://doi.org/10.5194/acp-18-14889-2018
E. F. Mikhailov, S. Yu. Mironova, M. V. Makarova, S. S. Vlasenko, T. I. Ryshkevich, A. V. Panov, and M. O. Andreae, “Studying seasonal variations in carbonaceous aerosol particles in the atmosphere over central Siberia,” Izv., Atmos. Ocean. Phys. 51 (4), 423–430 (2015).
G. I. Gorchakov, A. V. Karpov, A. V. Vasiliev, and I. A. Gorchakova, “Brown and black carbons in megacity smogs,” Atmos. Ocean. Opt. 30 (3), 248–254 (2017).
J. L. Hand, W. C. Malm, A. Laskin, D. Day, T. B. Lee, C. Wang, C. Carrico, J. Carrillo, J. P. Cowin, J. Collett, Jr., and M. J. Iedema, “Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study,” J. Geophys. Res.: Atmos. 110, 1–14 (2005). https://doi.org/10.1029/2004JD005728
A. Hoffer, A. Toth, I. Nyiro-Kosa, M. Posfai, and A. Gelencser, “Light absorption properties of laboratory-generated tar ball particles,” Atmos. Chem. Phys. 16, 239–246 (2016). https://doi.org/10.5194/acp-16-239-2016
K. Adachi, IIIA. J. Sedlacek, L. Kleinman, J. M. Huble, J. E. Shilling, T. B. Onash, T. Kinase, K. Sakata, J. Takahashi, and P. R. Buseck, “Spherical tar ball particles form through rapid chemical and physical changes of organic matter in biomass-burning smoke,” Proc. Nat. Acad. Sci. U.S.A. 116 (39), 19 336–19 341 (2019). https://doi.org/10.1073/pnas.1900129116
C. Li, Q. He, J. Schade, J. Passig, R. Zimmermann, D. Meidan, A. Laskin, and Y. Rudich, “Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging,” Atmos. Chem. Phys. 19, 139–163 (2019). https://doi.org/10.5194/acp-19-139-2019
A. J. Sedlasec, III, P. R. Buseck, K. Adachi, T. B. Onasch, S. K. Springstons, and J. Kleinman, “Formation and evolution of tar balls from northwestern US wildfires,” Atmos. Chem. Phys. 18 (15), 11289–11301 (2018). https://doi.org/10.5194/acp-18-11289-2018
I. B. Konovalov, M. Beekmann, N. A. Golovushkin, and M. O. Andrea, “Nonlinear behavior of organic aerosol in biomass burning plumes: A microphysical model analysis,” Atmos. Chem. Phys. Discuss. 19, 12 091–12 119 (2019). https://doi.org/10.5194/acp-19-12091-2019
P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carrico, M. J. Rood, E. Ostrom, K. J. Noon, W. von Houningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59 (3) Part 2, 609–619 (2002). https://doi.org/10.1175/1520-0469(2002)059<0609:C-OASSA>2.0.CO;2
Comments (0)