Ground-Level Ozone as a Factor of Increase in Community-Acquired Pneumonia Rate in Moscow in Warm Seasons

www.stateofglobalair.org/resources/report/state-global-air-report-2024. Cited September 3, 2024.

https://iris.who.int/bitstream/handle/10665/345334/9789240035409-rus.pdf. Cited September 3, 2024.

Resolution of the Chief State Sanitary Doctor of the Russian Federation dated December 22, 2017, No. 165 on Approval of Hygienic Standards GN 2.1.6.3492-17 “Maximum Permissible Concentrations (MPC) of Pollutants in the Atmospheric Air of Urban and Rural Settlements.” https://docs.cntd.ru/document/556185926. Cited September 3, 2024.

Resolution of the Chief State Sanitary Doctor of the Russian Federation dated January 28, 2021, No. 2 on Approval of Sanitary Rules and Regulations SanPiN 1.2.3685-21 “Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans.” https://docs.cntd.ru/document/573500115#6540IN. Cited September 3, 2024.

Y. Niu, T. Yang, X. Gu, R. Chen, X. Meng, J. Xu, L. Yang, J. Zhao, X. Zhang, C. Bai, J. Kang, P. Ran, H. Shen, F. Wen, K. Huang, Y. Chen, T. Sun, G. Shan, Y. Lin, S. Wu, J. Zhu, R. Wang, Z. Shi, Y. Xu, X. Ye, Y. Song, Q. Wang, Y. Zhou, L. Ding, T. Yang, W. Yao, Y. Guo, F. Xiao, Y. Lu, X. Peng, B. Zhang, D. Xiao, Z. Wang, H. Zhang, X. Bu, X. Zhang, L. An, S. Zhang, Z. Cao, Q. Zhan, Y. Yang, L. Liang, B. Cao, H. Dai, T. Wu, J. He, H. Li, H. Kan, and C. Wang, “Long-term ozone exposure and small airway dysfunction: The China Pulmonary Health (CPH) study,” Am. J. Respir. Crit. Care. Med. 205 (4), 450–458 (2022). https://doi.org/10.1164/rccm.202107-1599OC

Article  Google Scholar 

M. Albright, M. A. Guttenberg, and R. M. Tighe, “Ozone-induced models of airway hyperreactivity and epithelial injury,” Methods Mol. Biol. 2506, 67–81 (2022). https://doi.org/10.1007/978-1-0716-2364-0_5

Article  Google Scholar 

F. E. Hargreave, J. Dolovich, P. M. O’Byrne, E. H. Ramsdale, and E. E. Daniel, “The origin of airway hyperresponsiveness,” J. Allergy. Clin. Immunol. 78 (5), 825–32 (1986). https://doi.org/10.1016/0091-6749(86)90226-5

Article  Google Scholar 

R. M. Aris, D. Christian, P. Q. Hearne, K. Kerr, W. E. Finkbeiner, and J. R. Balmes, “Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy,” Am. Rev. Respir. Dis. 148 (5), 1363–1372 (1993). https://doi.org/10.1164/ajrccm/148.5.1363

Article  Google Scholar 

C. E. Atkinson, M. J. Kesic, and M. L. Hernandez, “Ozone in the development of pediatric asthma and atopic disease,” Immunol. Allergy. Clin. North. Am. 42 (4), 701–713 (2022). https://doi.org/10.1016/j.iac.2022.06.001

Article  Google Scholar 

X. Fang, S. Huang, Y. Zhu, J. Lei, Y. Xu, Y. Niu, and R. Chen, “Short-term exposure to ozone and asthma exacerbation in adults: A longitudinal study in China,” Front. Public. Health 10, 1070231 (2023). https://doi.org/10.3389/fpubh.2022.1070231

Article  Google Scholar 

P. Mallia and S. L. Johnston, “Mechanisms and experimental models of chronic obstructive pulmonary disease exacerbations,” Proc. Am. Thorac. Soc. 2 (4), 361–372 (2005). https://doi.org/10.1513/pats.200504-025SR.PMID:16267363

Article  Google Scholar 

E. V. Evstaf’eva, V. A. Lapchenko, A. S. Makarova, T. F. Burukhina, N. K. Abibulaeva, and I. A. Evstaf’eva, “Estimate of the dynamics of surface ozone concentration and meteorological parameters as risk factors for population health emergencies,” Khim. Fiz. 38 (11), 42–51 (2019).

Google Scholar 

A. N. Mikerov, “Factors participating in modulating the mechanisms of immune protection of lungs during pneumonia,” Problemy Osobo Opasnykh Infectsii, No 111, 81–83 (2012). https://doi.org/10.21055/0370-1069-2012-1(111)-81-83

E. V. Stepanov, V. V. Andreev, D. V. Chuprov, and V. T. Ivashkin, “The association of high Covid-19 cases and mortality with anomalous high surface ozone concentration in Moscow city in summer 2021,” Ross. Zh. Gastroenterologii, Gepatologii, Koloproktologii 32 (3), 18–22 (2022).

Google Scholar 

V. V. Krivosheev, A. I. Stolyarov, and A. A. Semenov, “Ozone impact on morbidity and mortality during the third wave of the Covid-19 pandemic in Europe,” Obshchestvennoe Zdorov’e Zdravookhranenie, No. 4, 5–11 (2021).

Google Scholar 

S. N. Avdeev, A. V. Dekhnich, A. A. Zaitsev, R. S. Kozlov, S. A. Rachina, V. A. Rudnov, A. I. Sinopal’nikov, I. E. Tyurin, O. V. Fesenko, and A. G. Chuchalin, “Federal guidelines on diagnosis and treatment of community-acquired pneumonia,” Pulmonologiya 32 (3), 295–355 (2022). https://doi.org/10.18093/0869-0189-2022-32-3-295-355

Article  Google Scholar 

https://rosstat.gov.ru/. Cited September 3, 2024.

T. N. Bilichenko, E. V. Bystritskaya, A. G. Chuchalin, A. S. Belevskii, and S. Z. Batyn, “Mortality of respiratory disease in 2014–2015 and ways of its improvement,” Pulmonologiya 26 (4), 389–397 (2016). https://doi.org/10.18093/0869-0189-2016-26-4-389-397

Article  Google Scholar 

A. Torres, W. E. Peetermans, G. Viegi, and F. Blasi, “Risk factors for community-acquired pneumonia in adults in Europe: A literature review,” Thorax 68 (11), 1057–1065 (2013). PMID: 24130229; PMCIDhttps://doi.org/10.1136/thoraxjnl-2013-204282

Article  Google Scholar 

E. Muthumbi, B. S. Lowe, C. Muyodi, E. Getambu, F. Gleeson, and J. A. G. Scott, “Risk factors for community-acquired pneumonia among adults in Kenya: A case-control study,” Pneumonia (Nathan) 9 (17) (2017). https://doi.org/10.1186/s41479-017-0041-2

J. Almirall, J. Blanquer, and S. Bello, “Community-acquired pneumonia among smokers,” Arch. Bronconeumol. 50 (6), 250–254 (2014). https://doi.org/10.1016/j.arbres.2013.11.016

Article  Google Scholar 

C. Guo, T. Yu, C. Lin, L. Y. Chang, Y. Bo, M. C. S. Wong, T. Tam, A. K. H. Lau, and X. Q. Lao, “Habitual exercise, air pollution, and pneumonia mortality: A longitudinal cohort study of approximately 0.4 million adults,” Am. J. Epidemiol. 191 (10), 1732–1741 (2022). PMID: https://doi.org/10.1093/aje/kwac11335773998

Article  Google Scholar 

H. T. Wang, H. Zhang, F. Z. Xue, L. Zhao, and W. C. Cao, “Associations of air pollutants with pneumonia hospital admissions in Qingdao, China: A prospective cohort study,” Environ. Sci. Pollut. Res. Int. 29 (19), 27 779–27 787 (2022). https://doi.org/10.1007/s11356-021-17892-7

Article  Google Scholar 

R. Li, N. Jiang, Q. Liu, J. Huang, X. Guo, F. Liu, and Z. Gao, “Impact of air pollutants on outpatient visits for acute respiratory outcomes,” Int. J. Environ. Res. Public. Health 14 (1), 47 (2017). https://doi.org/10.3390/ijerph14010047

Article  Google Scholar 

A. N. Mikerov, N. I. Alekseeva, S. S. Abramkina, and Yu. Yu. Eliseev, “Role of surfactant protein a and its oxidation in the susceptibility to experimental pneumonia,” Izv. Samarskogo Nauch. Tsentra Ross. Akad. Nauk 12 (1–7), 1769–1773 (2010).

S. N. Kotel’nikov and E. V. Stepanov, “An impact of tropospheric ozone on population health,” Trudy IOFAN 71, 72–94 (2015).

Google Scholar 

https://mosecom.mos.ru/. Cited September 3, 2024.

https://mos03.ru/. Cited September 3, 2024.

http://aisori-m.meteo.ru/waisori/index0.xhtml. Cited September 3, 2024.

Y. Zhang, J. Li, C. Wu, Y. Xiao, X. Wang, Y. Wang, L. Chen, L. Ren, and J. Wang, “Impacts of environmental factors on the aetiological diagnosis and disease severity of community-acquired pneumonia in China: A multicentre, hospital-based, observational study,” Epidemiol. Infect. 152 (80) (2024). https://doi.org/10.1017/S0950268824000700

A. V. Trubitsyn and S. N. Kotel’nikov, “The research of time correlations between ground-level ozone concentration and population health in Russia’s central regions,” Vestn. MGTU MIREA, No. 1, 235–242 (2015).

Google Scholar 

A. V. Cherednichenko, Aleks. V. Cherednichenko, V. S. Cherednichenko, and A. S. Nysanbaeva, “Time dynamics of the ground ozone and its influence on incidence in the major cities of Kazakhstan,” Gidrometeorologiya Obrazovanie, No. 1, 29–49 (2021).

Google Scholar 

P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Interrelation between dynamics of gas composition and meteorological parameters in the region of Tomsk,” Atmos. Ocean. Opt. 33 (6), 629–637 (2020).

Google Scholar 

E. V. Stepanov, V. V. Andreev, L. V. Konovaltseva, and S. G. Kasoev, “Surface ozone in the atmosphere of Moscow during the COVID-19 pandemic,” Atmos. Ocean. Opt. 35 (6), 732–740 (2022).

Google Scholar 

A. M. Zvyagintsev, I. N. Kuznetsova, I. Yu. Shalygina, V. A. Lapchenko, N. E. Brusova, A. A. Arkhangel’skaya, N. V. Tereb, and E. A. Lezina, “Causes and factors of positive surface ozone anomalies in the Moscow Region and on the southeastern coast of the Crimea,” Atmos. Ocean. Opt. 29 (5), 551–560 (2016).

Google Scholar 

B. D. Belan and T. K. Sklyadneva, “Tropospheric ozone. 4. Photochemical formation of tropospheric ozone: The role of solar radiation,” Atmos. Ocean. Opt. 21 (10), 746–754 (2008).

Google Scholar 

D. S. Rybakov and B. Z. Belashev, “Weather factors and ambulance calls for respiratory causes in the city of Petrozavodsk,” Ekologiya Cheloveka, No. 6, 36–48 (2021).

Google Scholar 

Comments (0)

No login
gif