H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115 (D22), D22209 (2010). https://doi.org/10.1029/2009JD013383
Climate change 2007—the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007).
K. N. Liou, “Influence of cirrus clouds on the weather and climate process: A global perspective,” Mon. Weather. Rev. 114 (6), 1167–1199 (1986). https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2
G. P. Kokhanenko, Yu. S. Balin, A. G. Borovoi, and M. M. Novoselov, “Studies of the orientation of crystalline particles in ice clouds by a scanning lidar,” Atmos. Ocean. Opt. 35 (5), 509–516 (2022).
M. Del Guasta, “Simulation of lidar returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of “face-tracing”,” J. Geophys. Res. 106 (D12), 12 589–12 602 (2001). https://doi.org/10.1029/2000JD900724
M. Del Guasta, “A second-generation ray-tracing technique applied to lidar returns from ice clouds,” in Proc. of MUSCLE X (Florence, 1999), pp. 48–57.
G. S. Lakkis, M. Lavorato, P. Canziani, and H. Lacomi, “Lidar observations of cirrus clouds in Buenos Aires,” J. Atmos. Sol.-Terr. Phys. 130–131, 89–95 (2015). https://doi.org/10.1016/j.jastp.2015.05.020
J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113 (D22), D22201 (2008). https://doi.org/10.1029/2008JD010071
C. Tinel, J. Testud, J. Pelon, R. J. Hogan, A. Protat, J. Delanoe, and D. Bouniol, “The retrieval of ice-cloud properties from cloud radar and lidar synergy,” J. Appl. Meteorol. 44 (6), 860–875 (2005). https://doi.org/10.1175/JAM2229.1
S. Katagiri, T. Hayasaka, A. Shimizu, I. Matsui, T. Nishizawa, N. Sugimoto, and T. Takamura, “Long term analysis of cirrus clouds' effects on shortwave and longwave radiation derived from data acquired by ground-based and satellite-borne observations,” AIP Conf. Proc. 1531, 492–495 (2013). https://doi.org/10.1063/1.4804814
K. Sassen, Z. Wang, and D. Liu, “Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements,” J. Geophys. Res. 113 (D8), A12 (2008). https://doi.org/10.1029/2008JD009972
B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm,” J. Quant. Spectrosc. Radiat. Transfer 146, 123–139 (2014). https://doi.org/10.1016/j.jqsrt.2014.02.029
B. A. Baum, P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, “Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds,” J. Appl. Meteorol. Clim. 50 (5), 1037–1056 (2011). https://doi.org/10.1175/2010JAMC2608.1
C. Zhou and P. Yang, “Backscattering peak of ice cloud particles,” Opt. Express 23, 11995–12003 (2015). https://doi.org/10.1364/OE.23.011995
M. Hess and M. Wiegner, “COP: A data library of optical properties of hexagonal ice crystals,” Appl. Opt. 33 (33), 7740–7746 (1994). https://doi.org/10.1364/AO.33.007740
V. Noel and K. Sassen, “Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44 (5), 653–664 (2005). https://doi.org/10.1175/JAM2223.1
Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Atmos. Okeana 24 (4), 293–299 (2011).
K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Rev. Lett. 39 (20), L20805 (2012). https://doi.org/10.1029/2012GL053116
Z. Wang, D. Liu, C. Xie, and J. Zhou, “An iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layer,” J. Opt. Soc. Korea 15 (3), 209–215 (2011). https://doi.org/10.3807/JOSK.2011.15.3.209
A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, V. A. Shishko, and D. N. Timofeev, Light Scattering on Atmospheric Ice Crystals in the Physical-Optics Approximation (Fizmatlit, Moscow, 2022) [in Russian].
A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, V. A. Shishko, and D. N. Timofeev, Scattering of Light on Atmospheric Ice Crystals in the Physical-Optics Approximation (Publishing House of SB RAS, Novosibirsk, 2020) [in Russian].
A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014). https://doi.org/10.1016/j.jqsrt.2014.04.030
A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25 (19), 22 341–22 346 (2017). https://doi.org/10.1364/OE.25.022341
D. N. Timofeev, A. V. Konoshonkin, and N. V. Kustova, “Modified Beam-Splitting 1 (MBS-1) algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles,” Atmos. Ocean. Opt. 31 (6), 642–649 (2018).
N. Kustova, A. Konoshonkin, V. Shishko, D. Timofeev, A. Borovoi, and Zh. Wang, “Coherent backscattering by large ice crystals of irregular shapes in cirrus clouds,” Atmosphere 13 (8), 1279 (2022). https://doi.org/10.3390/atmos13081279
D. Timofeev, N. Kustova, V. Shishko, and A. Konoshonkin, “Light-scattering properties for aggregates of atmospheric ice crystals within the physical optics approximation,” Atmosphere 14 (6), 933 (2023). https://doi.org/10.3390/atmos14060933
A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, D. N. Timofeev, and A. E. Babinovich, “Light backscattering for horizontally oriented ice “plate”, “column”, and “hollow column” particles of cirrus cloud,” Opt. Atmos. Okeana 37 (12), 1061–1068 (2024). https://doi.org/10.15372/AOO20241210
L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1492–1508 (2011). https://doi.org/10.1016/j.jqsrt.2011.02.015
T. Wehr, T. Kubota, G. Tzeremes, K. Wallace, H. Nakatsuka, Y. Ohno, R. Koopman, S. Rusli, M. Kikuchi, M. Eisinger, T. Tanaka, M. Taga, P. Deghaye, E. Tomita, and D. Bernaerts, “The EarthCARE mission—science and system overview,” Atmos. Meas. Tech. 16 (15), 3581–3608 (2023). https://doi.org/10.5194/amt-16-3581-2023
I. V. Samokhvalov, V. V. Bryukhanova, I. D. Bryukhanov, A. A. Doroshkevich, I. V. Zhivotenyuk, S. N. Volkov, N. S. Kirillov, E. V. Ni, A. P. Stykon, and O. Yu. Loktyushin, “Detection of local areas of horizontally oriented ice particles in high-level clouds using a matrix polarization lidar and study of their characteristics,” in Proc. of the X International Scientific and Practical Conference “Topical Problems of Radiaphysics” APR-2023 (Tomsk, 2023), pp. 201–203 [in Russian].
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications (Academic Press, San Diego, 1999).
B. V. Kaul’, “Symmetry of backscattering phase matrices as related to orientation of non-spherical aerosol particles,” Atmos. Ocean. Opt. 13 (10), 829–833 (2000).
C. Gil-Díaz, M. Sicard, A. Comerón, Oliveira D. C. F. Santos, C. Muñoz-Porcar, A. Rodriguez-Gómez, J. R. Lewis, E. J. Welton, and S. Lolli, “Geometrical and optical properties of cirrus clouds in Barcelona, Spain: Analysis with the two-way transmittance method of 4 years of lidar measurements,” Atmos. Meas. Tech. 17 (4), 1197–1216 (2024). https://doi.org/10.5194/amt-17-1197-2024
Comments (0)