Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, Weintraub D (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7(1):47. https://doi.org/10.1038/s41572-021-00280-3
Ablat N, Liu R, Ablimit M, Sun Y, Xu F, Zhao X, Han H, Pu X (2022) Preventive effects of a standardized flavonoid extract of safflower in rotenone-induced Parkinson’s disease rat model. Neuropharmacology 217:109209. https://doi.org/10.1016/j.neuropharm.2022.109209
Article PubMed CAS Google Scholar
Adami R, Bottai D (2022) Curcumin and neurological diseases. Nutr Neurosci 25(3):441–461. https://doi.org/10.1080/1028415X.2020.1760531
Article PubMed CAS Google Scholar
Adamowicz DH, Roy S, Salmon DP, Galasko DR, Hansen LA, Masliah E, Gage FH (2017) Hippocampal α-Synuclein in Dementia with Lewy Bodies Contributes to Memory Impairment and Is Consistent with Spread of Pathology. J Neurosci 37(7):1675–1684. https://doi.org/10.1523/JNEUROSCI.3047-16.2016
Article PubMed PubMed Central CAS Google Scholar
Aggarwal ML, Chacko KM, Kuruvilla BT (2016) Systematic and comprehensive investigation of the toxicity of curcuminoidessential oil complex: A bioavailable turmeric formulation. Mol Med Rep 13(1):592–604. https://doi.org/10.3892/mmr.2015.4579
Article PubMed CAS Google Scholar
Aggleton JP, Nelson AJD, O’Mara SM (2022) Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 140:104813. https://doi.org/10.1016/j.neubiorev.2022.104813
Article PubMed PubMed Central Google Scholar
Alabi AO, Ajayi AM, Ben-Azu B, Bakre AG, Umukoro S (2019) Methyl jasmonate abrogates rotenone-induced parkinsonian-like symptoms through inhibition of oxidative stress, release of pro-inflammatory cytokines, and down-regulation of immnopositive cells of NF-κB and α-synuclein expressions in mice. Neurotoxicology 74:172–183. https://doi.org/10.1016/j.neuro.2019.07.003
Article PubMed CAS Google Scholar
Alam M, Schmidt WJ (2004) L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats. Behav Brain Res 153(2):439–446. https://doi.org/10.1016/j.bbr.2003.12.021
Article PubMed CAS Google Scholar
Alzoubi KH, Mokhemer E, Abuirmeileh AN (2018) Beneficial effect of etazolate on depression-like behavior and, learning, and memory impairment in a model of Parkinson’s disease. Behav Brain Res 350:109–115. https://doi.org/10.1016/j.bbr.2018.05.004
Article PubMed CAS Google Scholar
Baj T, Seth R (2018) Role of Curcumin in Regulation of TNF-α Mediated Brain Inflammatory Responses. Recent Pat Inflamm Allergy Drug Discov 12(1):69–77. https://doi.org/10.2174/1872213X12666180703163824
Article PubMed CAS Google Scholar
Bekris S, Antoniou K, Daskas S, Papadopoulou-Daifoti Z (2005) Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res 161(1):45–59. https://doi.org/10.1016/j.bbr.2005.01.005
Article PubMed CAS Google Scholar
Belloso-Iguerategui A, Zamarbide M, Merino-Galan L, Rodríguez-Chinchilla T, Gago B, Santamaria E, Fernández-Irigoyen J, Cotman CW, Prieto GA, Quiroga-Varela A, Rodríguez-Oroz MC (2023) Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain 146(12):4949–4963. https://doi.org/10.1093/brain/awad227
Article PubMed PubMed Central Google Scholar
Belviranlı M, Okudan N (2019) Voluntary, involuntary and forced exercises almost equally reverse behavioral impairment by regulating hippocampal neurotrophic factors and oxidative stress in experimental Alzheimer’s disease model. Behav Brain Res 364:245–255. https://doi.org/10.1016/j.bbr.2019.02.030
Article PubMed CAS Google Scholar
Ben Youssef S, Brisson G, Doucet-Beaupré H, Castonguay AM, Gora C, Amri M, Lévesque M (2021) Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson’s disease. Nutr Neurosci 24(3):197–211. https://doi.org/10.1080/1028415X.2019.1616435
Article PubMed CAS Google Scholar
Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22(2):404–420. https://doi.org/10.1016/j.nbd.2005.12.003
Article PubMed CAS Google Scholar
Burgos-Morón E, Calderón-Montaño JM, Salvador J, Robles A, López-Lázaro M (2010) The dark side of curcumin. Int J Cancer 126(7):1771–1775. https://doi.org/10.1002/ijc.24967
Article PubMed CAS Google Scholar
Cai B, Zhong L, Wang Q, Xu W, Li X, Chen T (2023) Curcumin alleviates 1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine- induced Parkinson’s disease in mice via modulating gut microbiota and short-chain fatty acids. Front Pharmacol 14:1198335. https://doi.org/10.3389/fphar.2023.1198335
Article PubMed PubMed Central CAS Google Scholar
Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290. https://doi.org/10.1016/j.nbd.2009.01.016
Article PubMed PubMed Central CAS Google Scholar
Chen L, Deltheil T, Turle-Lorenzo N, Liberge M, Rosier C, Watabe I, Sreng L, Amalric M, Mourre C (2014) SK channel blockade reverses cognitive and motor deficits induced by nigrostriatal dopamine lesions in rats. Int J Neuropsychopharmacol 17(8):1295–1306. https://doi.org/10.1017/S1461145714000236
Article PubMed CAS Google Scholar
Cohen H, Matar MA, Joseph Z (2013) Animal models of post-traumatic stress disorder. Curr Protoc Neurosci. Chap. 9:Unit 9.45 https://doi.org/10.1002/0471142301.ns0945s64
Cui Q, Li X, Zhu H (2016) Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep 13(2):1381–1388. https://doi.org/10.3892/mmr.2015.4657
Article PubMed CAS Google Scholar
Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, Khalaji N, Sarkisian VH (2017) Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis 32(6):1791–1803. https://doi.org/10.1007/s11011-017-0060-y
Article PubMed CAS Google Scholar
Darbinyan LV, Simonyan KV, Hambardzumyan LE, Manukyan LP, Badalyan SH, Sarkisian VH (2022) Protective effect of curcumin against rotenone-induced substantia nigra pars compacta neuronal dysfunction. Metab Brain Dis 37(4):1111–1118. https://doi.org/10.1007/s11011-022-00941-6
Article PubMed CAS Google Scholar
Darbinyan LV, Simonyan KV, Hambardzumyan LE, Simonyan MA, Simonyan RM, Manukyan LP (2023) Membrane-stabilizing and protective effects of curcumin in a rotenone-induced rat model of Parkinson disease. Metab Brain Dis 38(7):2457–2464. https://doi.org/10.1007/s11011-023-01237-z
Article PubMed CAS Google Scholar
Darios F, Corti O, Lücking CB, Hampe C, Muriel MP, Abbas N, Gu WJ, Hirsch EC, Rooney T, Ruberg M, Brice A (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12(5):517–526. https://doi.org/10.1093/hmg/ddg044
Article PubMed CAS Google Scholar
Dernie F (2020) Mitophagy in Parkinson’s disease: From pathogenesis to treatment target. Neurochem Int 138:104756. https://doi.org/10.1016/j.neuint.2020.104756
Article PubMed CAS Google Scholar
Dodel RC, Du Y, Bales KR, Ling Z, Carvey PM, Paul SM (1999) Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death. Brain Res Mol Brain Res 64(1):141–148. https://doi.org/10.1016/s0169-328x(98)00318-0
Comments (0)