IGF2BP2: an m6A reader that affects cellular function and disease progression

Wiener D, Schwartz S. The epitranscriptome beyond m(6)A. Nat Rev Genet. 2021;22:119–31. https://doi.org/10.1038/s41576-020-00295-8.

Article  CAS  PubMed  Google Scholar 

He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176. https://doi.org/10.1186/s12943-019-1109-9.

Article  PubMed  PubMed Central  Google Scholar 

Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, Abdelfattah N, Onyeagucha BC, Cui X, Lai Z, et al. Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression. Sci Adv. 2018;4:eaat8263. https://doi.org/10.1126/sciadv.aar8263.

Article  CAS  Google Scholar 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5. https://doi.org/10.1038/nchembio.1432.

Article  CAS  PubMed  Google Scholar 

van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M, Lafontaine DLJ. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019;47:7719–33. https://doi.org/10.1093/nar/gkz619.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017;45:6051–63. https://doi.org/10.1093/nar/gkx141.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4. https://doi.org/10.1038/nature14234.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei G, Almeida M, Pintacuda G, Coker H, Bowness JS, Ule J, Brockdorff N. Acute depletion of METTL3 implicates N (6)-methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Res. 2021;31:1395–408. https://doi.org/10.1101/gr.271635.120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM, Vagbo CB, Steiner FA, Homolka D, Pillai RS. Splice site m(6)A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell. 2021;184(3125–3142):e3125. https://doi.org/10.1016/j.cell.2021.03.062.

Article  CAS  Google Scholar 

Liu Y, Yang D, Liu T, Chen J, Yu J, Yi P. N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med. 2023;29:454–67. https://doi.org/10.1016/j.molmed.2023.03.005.

Article  CAS  PubMed  Google Scholar 

Li Y, Su R, Deng X, Chen Y, Chen J. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer. 2022;8:598–614. https://doi.org/10.1016/j.trecan.2022.02.010.

Article  CAS  PubMed  Google Scholar 

Larivera S, Meister G. Domain confusion 2: m(6)A-independent role of YTHDC2. Mol Cell. 2022;82:1608–9. https://doi.org/10.1016/j.molcel.2022.04.012.

Article  CAS  PubMed  Google Scholar 

Xu X, Cui J, Wang H, Ma L, Zhang X, Guo W, Xue X, Wang Y, Qiu S, Tian X, et al. IGF2BP3 is an essential N(6)-methyladenosine biotarget for suppressing ferroptosis in lung adenocarcinoma cells. Mater Today Bio. 2022;17:100503. https://doi.org/10.1016/j.mtbio.2022.100503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai XY, Shi L, Li Z, Yang HY, Wei JF, Ding Q. Main N6-methyladenosine readers: YTH family proteins in cancers. Front Oncol. 2021;11:635329. https://doi.org/10.3389/fonc.2021.635329.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 2011;25:1159–72. https://doi.org/10.1101/gad.2042311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95. https://doi.org/10.1038/s41556-018-0045-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Huttelmaier S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70:2657–75. https://doi.org/10.1007/s00018-012-1186-z.

Article  CAS  PubMed  Google Scholar 

Salton M, Elkon R, Borodina T, Davydov A, Yaspo ML, Halperin E, Shiloh Y. Matrin 3 binds and stabilizes mRNA. PLoS ONE. 2011;6:e23882. https://doi.org/10.1371/journal.pone.0023882.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014;16:191–8. https://doi.org/10.1038/ncb2902.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang JY, Chen LJ, Qiang P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 2021. https://doi.org/10.1186/s12935-021-01799-x.

Article  PubMed  PubMed Central  Google Scholar 

Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021;28:1135–48. https://doi.org/10.1038/s41418-020-00728-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107. https://doi.org/10.1016/j.redox.2019.101107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88. https://doi.org/10.1038/s41419-020-2298-2.

Article  PubMed  PubMed Central  Google Scholar 

Liu W, Zeng H. IGF2BP2 attenuates intestinal epithelial cell ferroptosis in colitis by stabilizing m(6)A-modified GPX4 mRNA. Cytokine. 2024;173:156388. https://doi.org/10.1016/j.cyto.2023.156388.

Article  CAS  PubMed  Google Scholar 

Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M, Ming L. TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov. 2023;9:431. https://doi.org/10.1038/s41420-023-01727-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye J, Chen X, Jiang X, Dong Z, Hu S, Xiao M. RNA demethylase ALKBH5 regulates hypopharyngeal squamous cell carcinoma ferroptosis by posttranscriptionally activating NFE2L2/NRF2 in an m(6) A-IGF2BP2-dependent manner. J Clin Lab Anal. 2022;36:e24514. https://doi.org/10.1002/jcla.24514.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif