Olaparib research update: mechanism, structure and clinical trials

Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S. Molecular mechanisms of Mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.

CAS  PubMed  Google Scholar 

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair and mutagenesis. Environ Mol Mutagen. 2017;58:235–63.

CAS  PubMed  PubMed Central  Google Scholar 

Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015;6:157.

PubMed  PubMed Central  Google Scholar 

Chen C-C, Feng W, Lim PX, Kass EM, Jasin M. Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annu Rev Cancer Biol. 2018;2:313–36.

PubMed  Google Scholar 

Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

CAS  PubMed  PubMed Central  Google Scholar 

Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol. 2018;15:564–76.

CAS  PubMed  Google Scholar 

Menear KA, Adcock C, Boulter R, Cockcroft X, Copsey L, Cranston A.et al. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2 H -phthalazin-1-one: A Novel Bioavailable Inhibitor of Poly(ADP-ribose) Polymerase-1. J Med Chem. 2008;51:6581–91.

Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S, et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Therapeutics. 2007;6:945–56.

CAS  Google Scholar 

Jones P, Altamura S, Boueres J, Ferrigno F, Fonsi M, Giomini C.et al. Discovery of 2--2 H -indazole-7-carboxamide (MK-4827): a novel Oral Poly(ADP-ribose)polymerase (PARP) Inhibitor Efficacious in BRCA-1 and -2 mutant tumors. J Med Chem. 2009;52:7170–85.

Wang B, Chu D, Feng Y, Shen Y, Aoyagi-Scharber M, Post LE. Discovery and Characterization of (8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent. J Med Chem. 2016;59:335–57.

CAS  PubMed  Google Scholar 

Huang M, Ren J, Wang Y, Chen X, Yang J, Tang T, et al. Design, synthesis and activity evaluation of new phthalazinone PARP inhibitors. Chem Pharm Bull. 2021;69:620–9.

CAS  Google Scholar 

Evers B, Drost R, Schut E, De Bruin M, Van Der Burg E, Derksen PWB, et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res. 2008;14:3916–25.

CAS  PubMed  Google Scholar 

Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. JCO. 2015;33:244–50.

CAS  Google Scholar 

Hirota K, Ooka M, Shimizu N, Yamada K, Tsuda M, Ibrahim MA, et al. XRCC1 counteracts poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib, and a clinical alkylating agent, temozolomide, by promoting the removal of trapped PARP1 from broken DNA. Genes Cells. 2022;27:331–44.

CAS  PubMed  PubMed Central  Google Scholar 

Mani C, Acharya G, Saamarthy K, Ochola D, Mereddy S, Pruitt K, et al. Racial differences in RAD51 expression are regulated by miRNA-214-5P and its inhibition synergizes with olaparib in triple-negative breast cancer. Breast Cancer Res. 2023;25:44.

CAS  PubMed  PubMed Central  Google Scholar 

Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X, et al. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun. 2023;14:252.

CAS  PubMed  PubMed Central  Google Scholar 

Liu F, Xie B, Ye R, Xie Y, Zhong B, Zhu J, et al. Overexpression of tripartite motif-containing 47 (TRIM47) confers sensitivity to PARP inhibition via ubiquitylation of BRCA1 in triple negative breast cancer cells. Oncogenesis. 2023;12:13.

CAS  PubMed  PubMed Central  Google Scholar 

Parvin S, Akter J, Takenobu H, Katai Y, Satoh S, Okada R, et al. ATM depletion induces proteasomal degradation of FANCD2 and sensitizes neuroblastoma cells to PARP inhibitors. BMC Cancer. 2023;23:313.

CAS  PubMed  PubMed Central  Google Scholar 

Sun R, Luo H, Su J, Di S, Zhou M, Shi B, et al. Olaparib suppresses MDSC recruitment via SDF1α/CXCR4 axis to improve the anti-tumor efficacy of CAR-T cells on breast cancer in mice. Mol Ther. 2021;29:60–74.

CAS  PubMed  Google Scholar 

Chen Z, Wang S, Liu K, Zhang R, Li Q, Bian W, et al. Practical and scalable manufacturing process for the key intermediate of poly(ADP-Ribose) polymerase inhibitor olaparib. ACS Omega. 2022;7:6313–21.

CAS  PubMed  PubMed Central  Google Scholar 

1-Oxo-3,4-dihydroisoquinoline-4-carboxamides as novel druglike inhibitors of poly(ADP-ribose) polymerase (PARP) with favourable ADME characteristics [Internet]. [cited 2023 May 16]. Available from: https://www.tandfonline.com/doi/epdf/10.1080/14756366.2021.1972993?needAccess=true&role=button.

James DI, Smith KM, Jordan AM, Fairweather EE, Griffiths LA, Hamilton NS, et al. First-in-class chemical probes against Poly(ADP-ribose) glycohydrolase (PARG) inhibit DNA repair with differential pharmacology to olaparib. ACS Chem Biol. 2016;11:3179–90.

CAS  PubMed  Google Scholar 

Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, et al. Opportunities for the repurposing of PARP inhibitors for the therapy of non‐oncological diseases. Br J Pharmacol. 2018;175:192–222.

CAS  PubMed  Google Scholar 

Xin M, Sun J, Huang W, Tang F, Liu Z, Jin Q, et al. Design and synthesis of novel phthalazinone derivatives as potent poly(ADP-ribose)polymerase 1 inhibitors. Future Medicinal Chem. 2020;12:1691–707.

CAS  Google Scholar 

Abd El-sattar NEA, Badawy EHK, Elrazaz EZ, Ismail NSM. Discovery of pyrano[2,3-d]pyrimidine-2,4-dione derivatives as novel PARP-1 inhibitors: design, synthesis and antitumor activity. RSC Adv.2021;11:4454–64.

CAS  PubMed  PubMed Central  Google Scholar 

Shagufta S, Ahmad I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. Med Chem Commun. 2017;8:871–85.

CAS  Google Scholar 

Ramadan SK, Elrazaz EZ, Abouzid KAM, El-Naggar AM. Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors. RSC Adv. 2020;10:29475–92.

CAS  PubMed  PubMed Central  Google Scholar 

Lin S, Zhang L, Zhang X, Yu Z, Huang X, Xu J, et al. Synthesis of novel dual target inhibitors of PARP and HSP90 and their antitumor activities. Bioorg Med Chem. 2020;28:115434.

CAS  PubMed  Google Scholar 

Pinheiro AC, Nogueira TCM, de Souza MVN. Quinoxaline nucleus: a promising scaffold in anti-cancer drug discovery. Anti-Cancer Agents Med. Chem. 16:1339–52.

Aggarwal R, Hooda M, Kumar P, Sumran G. Vision on synthetic and medicinal facets of 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazine scaffold. Top Curr Chem (Z). 2022;380:10.

CAS  Google Scholar 

Boraei ATA, Ghabbour HA, Gomaa MS, El Ashry ESH, Barakat A. Synthesis and anti-proliferative assessment of triazolo-thiadiazepine and triazolo-thiadiazine scaffolds. Molecules. 2019;24:4471.

PubMed  PubMed Central  Google Scholar 

Thabet FM, Dawood KM, Ragab EA, Nafie MS, Abbas AA. Design and synthesis of new bis(1,2,4-triazolo[3,4- b][1,3,4]thiadiazines) and bis((quinoxalin-2-yl)phenoxy)alkanes as anti-breast cancer agents through dual PARP-1 and EGFR targets inhibition. RSC Adv. 2022;12:23644–60.

Huang S-H, Cao R, Lin Q-W, Wu S-Q, Gao L-L, Sun Q, et al. Design, synthesis and mechanism studies of novel dual PARP1/BRD4 inhibitors against pancreatic cancer. Eur J Med Chem. 2022;230:114116.

CAS  PubMed  Google Scholar 

McGonigle S, Chen Z, Wu J, Chang P, Kolber-Simonds D, Ackermann K, et al. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling. Oncotarget. 2015;6:41307–23.

PubMed  PubMed Central  Google Scholar 

Xu Y, Wu H, Huang L, Zhai B, Li X, Xu S, et al. Rational design, synthesis and biological evaluation of dual PARP-1/2 and TNKS1/2 inhibitors for cancer therapy. Eur J Med Chem. 2022;237:114417.

CAS  PubMed  Google Scholar 

Li R, Zhao W, Jin C, Xiong H. Dual–target platinum(IV) complexes reverse cisplatin resistance in triple negative breast via inhibiting poly(ADP–ribose) polymerase (PARP–1) and enhancing DNA damage. Bioorg Chem. 2023;133:106354.

CAS  PubMed  Google Scholar 

Kayumov M, Jia L, Pardaev A, Song S-S, Mirzaakhmedov S, Ding C, et al. Design, synthesis and pharmacological evaluation of new PARP1 inhibitors by merging pharmacophores of olaparib and the natural product alantolactone. Eur J Med Chem. 2022;240:114574.

CAS  PubMed  Google Scholar 

Zheng M, Huo J, Gu X, Wang Y, Wu C, Zhang Q, et al. Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP. J Med Chem. 2021;64:7839–52.

CAS  PubMed  Google Scholar 

Pu C, Wang S, Luo D, Liu Y, Ma X, Zhang H, et al. Synthesis and biological evaluation of a tumor-selective degrader of PARP1. Bioorg Med Chem. 2022;69:116908.

CAS  PubMed  Google Scholar 

Spengler G, Gajdács M, Marć MA, Domínguez-Álvarez E, Sanmartín C. Organoselenium compounds as novel adjuvants of chemotherapy drugs—a promising approach to fight cancer drug resistance. Molecules. 2019;24:336.

PubMed  PubMed Central 

Comments (0)

No login
gif