Basu Baul TS, Hlychho B, Das Pramanik S, Lyčka A, Roy P, Mahmoud AG, et al. Organotin(IV) complexes derived from 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone) as prospective anti-proliferative agents: Synthesis, characterization, structures and in vitro anticancer activity. J Inorg Biochem. 2024;261:112693. https://doi.org/10.1016/j.jinorgbio.2024.112693
Article CAS PubMed Google Scholar
Gul R, Muhammad N, Sirajuddin M, Noor A, Tumanov N, Wouters J, et al. Design, physicochemical confirmation, single crystal structures as well as exploration of antibacterial and anticancer potential of organotin(IV) carboxylates. J Mol Struct. 2024;1300:137306. https://doi.org/10.1016/j.molstruc.2023.137306
Liu X, Sun Y, Li Q, Zhang P, Tao R, Chang J, et al. Organotin(IV)-tetraphenylethylene acylhydrazone compounds with aggregation-induced emission property and application in anticancer therapy. Dye Pigment. 2024;223:111963. https://doi.org/10.1016/j.dyepig.2024.111963
Pellerito C, Emanuele S, Giuliano M, Fiore T. Organotin(IV) complexes with epigenetic modulator ligands: New promising candidates in cancer therapy. Inorg Chim Acta. 2022;536:120901. https://doi.org/10.1016/j.ica.2022.120901
Sanakarganesan T, Elangovan N, Chandrasekar S, Ganesan E, Balachandran V, Sowrirajan S, et al. Synthesis, Hirshfeld surface analysis, computational, wave function properties, anticancer and cytotoxicity activity of di[(p-chlorobenzyl) (dibromo)] (4,7-dimethyl-1,10-phenanthroline)tin (IV) complex. Inorg Chim Acta 2023;547:121361. https://doi.org/10.1016/j.ica.2022.121361
Devi J, Kumar B, Taxak B. Recent advancements of organotin(IV) complexes derived from hydrazone and thiosemicarbazone ligands as potential anticancer agents. Inorg Chem Commun. 2022;139:109208. https://doi.org/10.1016/j.inoche.2022.109208
Du X-M, Ma J-W, Ru J, Cui Y, Ma C-L. Anticancer effect of organotin complexes derived from 2,6-naphthalenedicarboxylic acid by enhancing the ROS generation. J Mol Struct. 2024;1303:137553. https://doi.org/10.1016/j.molstruc.2024.137553
Guan R, Zhou Z, Zhang M, Liu H, Du W, Tian X, et al. Organotin(IV) carboxylate complexes containing polyether oxygen chains with two-photon absorption in the near infrared region and their anticancer activity. Dye Pigment. 2018;158:428–37. https://doi.org/10.1016/j.dyepig.2018.05.072
Patra SA, Sahu G, Mohapatra D, Pattanayak PD, Dinda R. Fluorescent diorganotin(IV) complexes as anticancer agents: study of cytotoxicity, cellular localization, and mechanism of cell death. Organometallics. 2023;42:1934–50. https://doi.org/10.1021/acs.organomet.3c00182
Sirajuddin M, Ali S, Tariq M, Khan H, AlObaid A, Bari A. Synthesis, characterization, exploration of anti-cancer, anti-leishmanial, anti-microbial activities, pharmacokinetic and docking studies of Sn(IV) complexes. Inorg Chim Acta. 2024;568:122082. https://doi.org/10.1016/j.ica.2024.122082
Jiang W-J, Mo T-Z, Zhang F-X, Kuang D-Z, Tan Y-X. Syntheses, crystal structures and in vitro anticancer activities of dibenzyltin compounds based on the N-(2-phenylacetic acid)-aroyl hydrazone. Chin J Struct Chem. 2020;39:673–81. https://doi.org/10.14102/j.cnki.0254-5861.2011-2522
Tian W, Zhong W, Yang Z, Chen L, Lin S, Li Y, et al. Synthesis, characterization and discovery of multiple anticancer mechanisms of dibutyltin complexes based on salen-like ligands. J Inorg Biochem. 2024;251:112434. https://doi.org/10.1016/j.jinorgbio.2023.112434
Article CAS PubMed Google Scholar
Ullah H, Previtali V, Mihigo HB, Twamley B, Rauf MK, Javed F, et al. Structure-activity relationships of new Organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines. Eur J Med Chem. 2019;181:111544. https://doi.org/10.1016/j.ejmech.2019.07.047
Article CAS PubMed Google Scholar
Basu Baul TS, Brahma S, Tamang R, Duthie A, Koch B, Parkin S. Synthesis, structures, and cytotoxicity insights of organotin(IV) complexes with thiazole-appended pincer ligand. J Inorg Biochem. 2025;262:112750. https://doi.org/10.1016/j.jinorgbio.2024.112750
Article CAS PubMed Google Scholar
Kasalović MP, Jelača S, Maksimović-Ivanić D, Lađarević J, Radovanović L, Božić B, et al. Novel diphenyltin(IV) complexes with carboxylato N-functionalized 2-quinolone ligands: Synthesis, characterization and in vitro anticancer studies. J Inorg Biochem. 2024;250:112399. https://doi.org/10.1016/j.jinorgbio.2023.112399
Article CAS PubMed Google Scholar
Wang J, Chen H, Song Q, Liu X, Li C, Wang H, et al. Synthesis and in vitro cytotoxicity study of three di-organotin(IV) Schiff base di-acylhydrazone complexes. J Inorg Biochem. 2022;236:111983. https://doi.org/10.1016/j.jinorgbio.2022.111983
Article CAS PubMed Google Scholar
Wujiu J, Zhijian Z, Penghui N, Yuxing T. Self-assembly synthesis of diorganotin complexes based on arylformylhydrazone possessing ONO donor set: anticancer activity and mechanism. Metallomics. 2022;14:mfac021. https://doi.org/10.1093/mtomcs/mfac021
Ahsen S, Tanvir I, Uddin N, Yasmeen T, Abbas S, Naz S, et al. Synthesis, structural elucidation and anticancer activity of diorganotin(IV) complexes derived from isonicotinoyl hydrazones. Inorg Chim Acta. 2024;564:121965. https://doi.org/10.1016/j.ica.2024.121965
Jiang W, Luo Q, Huang W, Tan Y, Peng Y. Synthesis, anticancer activity, and mechanistic investigations of aryl-alkyl diorganotin arylformylhydrazone complexes. J Inorg Biochem. 2025;262:112756. https://doi.org/10.1016/j.jinorgbio.2024.112756
Article CAS PubMed Google Scholar
Jiang W, Fan S, Zhu Z, Huang H, Tan Y, Peng Y. Design, synthesis and mechanistic studies of novel arylformylhydrazone butylphenyltin complexes as potential anticancer agents. Bioorg Chem. 2024;149:107502. https://doi.org/10.1016/j.bioorg.2024.107502
Article CAS PubMed Google Scholar
Ramzan S, Shujah S, Holt KB, Rehman Z-u, Hussain ST, Cockcroft JK, et al. Structural characterization, DNA binding study, antioxidant potential and antitumor activity of diorganotin(IV) complexes against human breast cancer cell line MDA-MB-231. J Organomet Chem. 2023;990:122671. https://doi.org/10.1016/j.jorganchem.2023.122671
Jiang W, Fan S, Zhou Q, Zhang F, Kuang D, Tan Y. Diversity of complexes based on p-nitrobenzoylhydrazide, benzoylformic acid and diorganotin halides or oxides self-assemble: cytotoxicity, the induction of apoptosis in cancer cells and DNA-binding properties. Bioorg Chem. 2020;94:103402. https://doi.org/10.1016/j.bioorg.2019.103402
Article CAS PubMed Google Scholar
Tian W, Ji M, Yang T, Zhong W, Li Y, Yang M, et al. Design, synthesis, crystal structure and anticancer activity of organotin(IV)-rhein carboxylates. J Mol Struct. 2024;1318:139341. https://doi.org/10.1016/j.molstruc.2024.139341
Chiodi D, Ishihara Y. “Magic Chloro”: profound effects of the chlorine atom in drug discovery. J Med Chem. 2023;66:5305–31. https://doi.org/10.1021/acs.jmedchem.2c02015
Article CAS PubMed Google Scholar
Cyboran-Mikolajczyk S, Matczak K, Olchowik-Grabarek E, Sekowski S, Nowicka P, Krawczyk-Lebek A, et al. The influence of the chlorine atom on the biological activity of 2′-hydroxychalcone in relation to the lipid phase of biological membranes - Anticancer and antimicrobial activity. Chem-Biol Interact. 2024;398:111082. https://doi.org/10.1016/j.cbi.2024.111082
Article CAS PubMed Google Scholar
Chong P, Sebahar P, Youngman M, Garrido D, Zhang H, Stewart EL, et al. Rational design of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem. 2012;55:10601–9. https://doi.org/10.1021/jm301294g
Article CAS PubMed Google Scholar
Yu H, Hou Z, Tian Y, Mou Y, Guo C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur J Med Chem. 2018;151:434–49. https://doi.org/10.1016/j.ejmech.2018.04.005
Article CAS PubMed Google Scholar
Cieslik W, Musiol R, Nycz JE, Jampilek J, Vejsova M, Wolff M, et al. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg Med Chem. 2012;20:6960–8. https://doi.org/10.1016/j.bmc.2012.10.027
Article CAS PubMed Google Scholar
Chen P, Zhuang Y-X, Diao P-C, Yang F, Wu S-Y, Lv L, et al. Synthesis, biological evaluation, and molecular docking investigation of 3-amidoindoles as potent tubulin polymerization inhibitors. Eur J Med Chem. 2019;162:525–33. https://doi.org/10.1016/j.ejmech.2018.11.038
Comments (0)