A review on efficacy of phytochemicals in the treatment of trypanosomiasis

Clark AM. Natural products as a resource for new drugs. Pharm Res. 1996;13:1133–44. https://doi.org/10.1023/a:1016091631721.

Article  CAS  PubMed  Google Scholar 

Tyler V, Brady L, Riobbers J Pharmacognosy. 9th edn. Lea and Febiger, Philadelphia. Wood, AS, Reinhart, BS Rajaratham G and Summers, JD 1971. A Comparison of Blood constituents of Dwarf Versus Non dwarf Birds. J Poultry Sci. 1988;50:804-7.

Cheuka PM, Mayoka G, Mutai P, Chibale K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules. 2016;22:58. https://doi.org/10.3390/molecules22010058.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howes MJR, Quave CL, Collemare J, Tatsis EC, Twilley D, Lulekal E, et al. Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants, People, Planet. 2020;2:463–81.

Article  Google Scholar 

Howes MR. The evolution of anticancer drug discovery from plants. Lancet Oncol. 2018;19:293–4. https://doi.org/10.1016/s1470-2045(18)30136-0.

Article  PubMed  Google Scholar 

Tulp M, Bohlin L. Functional versus chemical diversity: is biodiversity important for drug discovery? Trends Pharmacol Sci. 2002;23:225–31. https://doi.org/10.1016/s0165-6147(02)02007-2.

Article  CAS  PubMed  Google Scholar 

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–29. https://doi.org/10.1038/nrd4510.

Article  CAS  PubMed  Google Scholar 

Jia CY, Li JY, Hao GF, Yang GF. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov Today. 2020;25:248–58. https://doi.org/10.1016/j.drudis.2019.10.014.

Article  CAS  PubMed  Google Scholar 

Burton A. Gardens that take care of us. Lancet Neurol. 2014;13:447–8.

Article  PubMed  Google Scholar 

Whear R, Coon JT, Bethel A, Abbott R, Stein K, Garside R. What is the impact of using outdoor spaces such as gardens on the physical and mental well-being of those with dementia? A systematic review of quantitative and qualitative evidence. J Am Med Dir Assoc. 2014;15:697–705. https://doi.org/10.1016/j.jamda.2014.05.013.

Article  PubMed  Google Scholar 

Feasey N, Wansbrough-Jones M, Mabey DC, Solomon AW. Neglected tropical diseases. Br Med Bull. 2010;93:179–200.

Article  PubMed  Google Scholar 

Pink R, Hudson A, Mouriès MA, Bendig M. Opportunities and challenges in anti-parasitic drug discovery. Nat Rev Drug Discov. 2005;4:727–40. https://doi.org/10.1038/nrd1824.

Article  CAS  PubMed  Google Scholar 

Nunes M, Dones W, Morillo C, Encina J, Ribeiro A. Council on Chagas disease of the InterAmerican Society of Cardiology. J Am Coll Cardiol. 2013;62:767–76.

Article  PubMed  Google Scholar 

Andrews KT, Haque A, Jones MK. HDAC inhibitors in parasitic diseases. Immunology Cell Biol. 2012;90:66–77.

Article  CAS  Google Scholar 

Simoben CV, Ntie-Kang F, Akone SH, Sippl W. Compounds from African medicinal plants with activities against selected parasitic diseases: schistosomiasis, trypanosomiasis and leishmaniasis. Nat Prod Bioprospect. 2018;8:151–69. https://doi.org/10.1007/s13659-018-0165-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hide G. History of sleeping sickness in East Africa. Clin Microbiol Rev. 1999;12:112–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seke Etet PF, Mahomoodally MF. New insights in staging and chemotherapy of African trypanosomiasis and possible contribution of medicinal plants. ScientificWorldJournal. 2012;2012:343652. https://doi.org/10.1100/2012/343652.

Article  PubMed  PubMed Central  Google Scholar 

Naß J, Efferth T. The activity of Artemisia spp. and their constituents against Trypanosomiasis. Phytomedicine. 2018;47:184–91. https://doi.org/10.1016/j.phymed.2018.06.002.

Article  CAS  PubMed  Google Scholar 

Alenezi S, Igoli NP, Gray AI, Oaikhena EE, Alfayez IA, de Koning HP, et al. Anti-trypanosomal and antileishmanial activity of compounds from some Nigerian plants. Exp Parasitology. 2024;266:108844. https://doi.org/10.1016/j.exppara.2024.108844.

Article  CAS  Google Scholar 

Cecchi G, Paone M, Franco JR, Fèvre EM, Diarra A, Ruiz JA, et al. Towards the Atlas of human African trypanosomiasis. Int J Health Geogr. 2009;8:15. https://doi.org/10.1186/1476-072x-8-15.

Article  PubMed  PubMed Central  Google Scholar 

Fèvre EM, Wissmann BV, Welburn SC, Lutumba P. The burden of human African trypanosomiasis. PLoS Negl Trop Dis. 2008;2:e333. https://doi.org/10.1371/journal.pntd.0000333.

Article  PubMed  PubMed Central  Google Scholar 

Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet. 2017;390:2397–409. https://doi.org/10.1016/s0140-6736(17)31510-6.

Article  PubMed  Google Scholar 

Barrett MP. Potential new drugs for human African trypanosomiasis: some progress at last. Curr Opin Infect Dis. 2010;23:603–8. https://doi.org/10.1097/QCO.0b013e32833f9fd0.

Article  CAS  PubMed  Google Scholar 

Barrett MP, Boykin DW, Brun R, Tidwell RR. Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol. 2007;152:1155–71. https://doi.org/10.1038/sj.bjp.0707354.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Louis FJ, Kohagne Tongue L, Ebo OEV, Simarro PP. [Organizing an active screening campaign for human African trypanosomiasis due to Trypanosoma brucei gambiense]. Med Trop. 2008;68:11–6.

CAS  Google Scholar 

Laryea MK, Abotsi KMW, Woode E, Dickson RA, Webster L, Ekuadzi E Antiplasmodial and anti-trypanosomial monoterpene indole alkaloids from Picralima nitida. Nat Prod Res. 2024. https://doi.org/10.1080/14786419.2024.2434710.

Morrow T. FDA gives first-ever approval of drug to treat Chagas’ disease. Managed care. 2017;26:38–40.

PubMed  Google Scholar 

Prayag K, Surve DH, Paul AT, Kumar S, Jindal AB. Nanotechnological interventions for treatment of trypanosomiasis in humans and animals. Drug Delivery Transl Res. 2020;10:945–61. https://doi.org/10.1007/s13346-020-00764-x.

Article  Google Scholar 

Pandian SRK, Panneerselvam T, Pavadai P, Govindaraj S, Ravishankar V, Palanisamy P, et al. Nano based approach for the treatment of neglected tropical diseases. Front Nanotechnol. 2021;3:665274. https://doi.org/10.3389/fnano.2021.665274.

Article  Google Scholar 

Cordell GA. Phytochemistry and traditional medicine—the revolution continues. Phytochemistry Lett. 2014;10:1.

Article  Google Scholar 

Ntie-Kang F, Lifongo LL, Simoben CV, Babiaka SB, Sippl W, Mbaze LM. The uniqueness and therapeutic value of natural products from West African medicinal plants, part II: terpenoids, geographical distribution and drug discovery. RSC Adv. 2014;4:35348–70.

Article  CAS  Google Scholar 

Tietjen I, Ntie-Kang F, Mwimanzi P, Onguéné PA, Scull MA, Idowu TO, et al. Screening of the Pan-African natural product library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors. PLoS One. 2015;10:e0121099.

Article  PubMed  PubMed Central  Google Scholar 

Ibrahim MA, Mohammed A, Isah MB, Aliyu AB. Anti-trypanosomal activity of African medicinal plants: A review update. J Ethnopharmacol. 2014;154:26–54.

Article  PubMed  Google Scholar 

Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M, Lifongo LL, et al. AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS One. 2013;8:e78085.

Article  CAS 

Comments (0)

No login
gif