Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119 https://doi.org/10.1016/j.diabres.2021.109119
Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92:63–69. https://doi.org/10.1136/postgradmedj-2015-133281
Article CAS PubMed Google Scholar
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33:S62–69. https://doi.org/10.2337/dc10-S062
Article PubMed Central Google Scholar
Oikonomakos NG. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy. Curr Protein Pept Sci. 2002;3:561–86. https://doi.org/10.2174/1389203023380422
Article CAS PubMed Google Scholar
Agius L. Physiological control of liver glycogen metabolism: lessons from novel glycogen phosphorylase inhibitors. Mini Rev Med Chem. 2010;10:1175–87. https://doi.org/10.2174/138955710793177403
Article CAS PubMed Google Scholar
Baker DJ, Greenhaff PL, MacInnes A, Timmons JA. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction. Diabetes. 2006;55:1855–61. https://doi.org/10.2337/db05-1687
Article CAS PubMed Google Scholar
Docsa T, Czifrak K, Huse C, Somsak L, Gergely P. Effect of glucopyranosylidene-spiro-thiohydantoin on glycogen metabolism in liver tissues of streptozotocin-induced and obese diabetic rats. Mol Med Report. 2011;4:477–81. https://doi.org/10.3892/mmr.2011.464
Nagy L, Béke F, Juhász L, Kovács T, Juhász-Tóth É, Docsa T, et al. Glycogen phosphorylase inhibitor, 2,3-bis[(2E)-3-(4-hydroxyphenyl)prop-2-enamido] butanedioic acid (BF142), improves baseline insulin secretion of MIN6 insulinoma cells. PloS One. 2020;15:e0236081 https://doi.org/10.1371/journal.pone.0236081.
Somsák L, Czifrák K, Tóth M, Bokor E, Chrysina ED, Alexacou KM, et al. New inhibitors of glycogen phosphorylase as potential antidiabetic agents. Curr Med Chem. 2008;15:2933–83. https://doi.org/10.2174/092986708786848659
Baker DJ, Timmons JA, Greenhaff PL. Glycogen phosphorylase inhibition in type 2 diabetes therapy: a systematic evaluation of metabolic and functional effects in rat skeletal muscle. Diabetes. 2005;54:2453–9. https://doi.org/10.2337/diabetes.54.8.2453
Article CAS PubMed Google Scholar
Leonidas DD, Hayes JM, Kato A, Skamnaki VT, Chatzileontiadou DS, Kantsadi AL, et al. Phytogenic polyphenols as glycogen phosphorylase inhibitors: the potential of triterpenes and flavonoids for glycaemic control in type 2 diabetes. Curr Med Chem. 2017;24:384–403. https://doi.org/10.2174/29867324666161118122534
Article CAS PubMed Google Scholar
Habash M, Taha MO. Ligand-based modelling followed by synthetic exploration unveil novel glycogen phosphorylase inhibitory leads. Bioorg Med Chem. 2011;19:4746–71. https://doi.org/10.1016/j.bmc.2011.06.086
Article CAS PubMed Google Scholar
Somsak L. Glucose derived inhibitors of glycogen phosphorylase. C R Chim. 2011;14:211–23. https://doi.org/10.1016/j.crci.2010.09.004
Rath VL, Ammirati M, Danley DE, Ekstrom JL, Gibbs EM, Hynes TR, et al. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol. 2000;7:677–82. https://doi.org/10.1016/S1074-5521(00)00004-1
Article CAS PubMed Google Scholar
Wang Y, Li S, Yan Z, Zhang L. Computational insights into novel inhibitor N-(3-(tert-Butylcarbamoyl)-4-methoxyphenyl)-indole and ingliforib specific against GP isoenzyme dimers interaction mechanism. Molecules. 2023;28:4909 https://doi.org/10.3390/molecules28134909
Article CAS PubMed PubMed Central Google Scholar
Freeman S, Bartlett JB, Convey G, Hardern I, Teague JL, Loxham SJ, et al. Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme. Br J Pharmacol. 2006;49:775–85. https://doi.org/10.1038/sj.bjp.0706925
Oikonomakos NG, Skamnaki VT, Tsitsanou KE, Gavalas NG, Johnson LN. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure. 2000;8:575–84. https://doi.org/10.1016/s0969-2126(00)00144-1
Article CAS PubMed Google Scholar
Onda K, Suzuki T, Shiraki R, Yonetoku Y, Negoro K, Momose K, et al. Synthesis of 5-chloro-N-aryl-1H-indole-2-carboxamide derivatives as inhibitors of human liver glycogen phosphorylase a. Bioorg Med Chem. 2008;16:5452–64. https://doi.org/10.1016/j.bmc.2008.04.010
Article CAS PubMed Google Scholar
Ragno R, Coluccia A, Regina GL, Martino GD, Piscitelli F, Lavecchia A, et al. Design, molecular modeling, synthesis, and anti-HIV-1 activity of new indolyl aryl sulfones. Novel derivatives of the indole-2-carboxamide. J Med Chem. 2006;49:3172–84. https://doi.org/10.1021/jm0512490
Article CAS PubMed Google Scholar
Andersen B, Westergaard N. The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors. Biochem J. 2002;367:443–50. https://doi.org/10.1042/bj20020153
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Song C, Miao G, Zhao L, Yan Z, Wang Y. Novel liver-targeted conjugates of glycogen phosphorylase inhibitor PSN-357 for the treatment of diabetes: design, synthesis, pharmacokinetic and pharmacological evaluations. Sci Rep. 2017;7:42251 https://doi.org/10.1038/srep42251
Article CAS PubMed PubMed Central Google Scholar
Arunrattiyakorn P, Kuno M, Aree T, Laphookhieo S, Sriyatep T, Kanzaki H, et al. Biotransformation of β‑mangostin by an endophytic fungus of Garcinia mangostana to furnish xanthenes with an unprecedented heterocyclic skeleton. J Nat Prod. 2018;81:2244–2250. https://doi.org/10.1021/acs.jnatprod.8b00519
Article CAS PubMed Google Scholar
Arunrattiyakorn P, Suwannasai S, Aree T, Kanokmedhakul S, Ito H, Kanzaki H. Biotransformation of α-mangostin by Collectotrichum sp. MT02 and Phomopsis euphorbiae K12. J Mol Catal B Enzym. 2014;102:174–9. https://doi.org/10.1016/j.molcatb.2014.02.010
Henkel T, Mueller H, Schmidt D, Wollweber H. New natural Substances of hyphodermins and chemical derivatives. Ger. Offen. DE. 1997:19611366
Loughlin WA, Pierens GK, Petersson MJ, Henderson LC, Healy PC. Evaluation of novel hyphodermin derivatives as glycogen phosphorylase a inhibitors. Bioorg Med Chem. 2008;16:6172–8. https://doi.org/10.1016/j.bmc.2008.04.047
Article CAS PubMed Google Scholar
Leonidas DD, Zographos SE, Tsitsanou KE, Skamnaki VT, Stravodimos G, Kyriakis E. Glycogen phosphorylase revisited: extending the resolution of the R- and T-state structures of the free enzyme and in complex with allosteric activators. Acta crystallogr. 2021;77:303–11. https://doi.org/10.1107/S2053230X21008542
Hoover DJ, Lefkowitz-Snow S, Burgess-Henry JL, Martin WH, Armento SJ, Stock IA, et al. Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J Med Chem. 1998;41:2934–8. https://doi.org/10.1021/jm980264k
Article CAS PubMed Google Scholar
Bruker. APEX2 v. 2014.9-0, Bruker AXS Inc., Madison, WI, 2014.
Bruker SHELXTL XT. Program for crystal structure solution, v. (2014)/4. Madison, WI: Bruker AXS Inc.; 2014.
Bruker. SHELXTL XLMP Program for crystal structure refinement - Multi-CPU. Madison, WI: Bruker AXS Inc.; 2014. v. 2014/7
Kyriakis E, Solovou TGA, Kun S, Czifrák K, Szőcs B, Juhász L, et al. Probing the β-pocket of the active site of human liver glycogen phosphorylase with 3-(C-β-D-glucopyranosyl)-5-(4-substituted-phenyl)-1, 2, 4-triazole inhibitors. Bioorg Chem. 2018;77:485–93. https://doi.org/10.1016/j.bioorg.2018.02.008
Article CAS PubMed Google Scholar
Saheki S, Takeda A, Shimazu T. Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity. Anal Biochem. 1985;148:277–81. https://doi.org/10.1016/0003-2697(85)90229-5
Comments (0)