Synthesis and evaluation of tetrahydrobenzo[]indole derivatives as glycogen phosphorylase inhibitors

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119 https://doi.org/10.1016/j.diabres.2021.109119

Article  PubMed  Google Scholar 

Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92:63–69. https://doi.org/10.1136/postgradmedj-2015-133281

Article  CAS  PubMed  Google Scholar 

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33:S62–69. https://doi.org/10.2337/dc10-S062

Article  PubMed Central  Google Scholar 

Oikonomakos NG. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy. Curr Protein Pept Sci. 2002;3:561–86. https://doi.org/10.2174/1389203023380422

Article  CAS  PubMed  Google Scholar 

Agius L. Physiological control of liver glycogen metabolism: lessons from novel glycogen phosphorylase inhibitors. Mini Rev Med Chem. 2010;10:1175–87. https://doi.org/10.2174/138955710793177403

Article  CAS  PubMed  Google Scholar 

Baker DJ, Greenhaff PL, MacInnes A, Timmons JA. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction. Diabetes. 2006;55:1855–61. https://doi.org/10.2337/db05-1687

Article  CAS  PubMed  Google Scholar 

Docsa T, Czifrak K, Huse C, Somsak L, Gergely P. Effect of glucopyranosylidene-spiro-thiohydantoin on glycogen metabolism in liver tissues of streptozotocin-induced and obese diabetic rats. Mol Med Report. 2011;4:477–81. https://doi.org/10.3892/mmr.2011.464

Article  CAS  Google Scholar 

Nagy L, Béke F, Juhász L, Kovács T, Juhász-Tóth É, Docsa T, et al. Glycogen phosphorylase inhibitor, 2,3-bis[(2E)-3-(4-hydroxyphenyl)prop-2-enamido] butanedioic acid (BF142), improves baseline insulin secretion of MIN6 insulinoma cells. PloS One. 2020;15:e0236081 https://doi.org/10.1371/journal.pone.0236081.

Somsák L, Czifrák K, Tóth M, Bokor E, Chrysina ED, Alexacou KM, et al. New inhibitors of glycogen phosphorylase as potential antidiabetic agents. Curr Med Chem. 2008;15:2933–83. https://doi.org/10.2174/092986708786848659

Article  PubMed  Google Scholar 

Baker DJ, Timmons JA, Greenhaff PL. Glycogen phosphorylase inhibition in type 2 diabetes therapy: a systematic evaluation of metabolic and functional effects in rat skeletal muscle. Diabetes. 2005;54:2453–9. https://doi.org/10.2337/diabetes.54.8.2453

Article  CAS  PubMed  Google Scholar 

Leonidas DD, Hayes JM, Kato A, Skamnaki VT, Chatzileontiadou DS, Kantsadi AL, et al. Phytogenic polyphenols as glycogen phosphorylase inhibitors: the potential of triterpenes and flavonoids for glycaemic control in type 2 diabetes. Curr Med Chem. 2017;24:384–403. https://doi.org/10.2174/29867324666161118122534

Article  CAS  PubMed  Google Scholar 

Habash M, Taha MO. Ligand-based modelling followed by synthetic exploration unveil novel glycogen phosphorylase inhibitory leads. Bioorg Med Chem. 2011;19:4746–71. https://doi.org/10.1016/j.bmc.2011.06.086

Article  CAS  PubMed  Google Scholar 

Somsak L. Glucose derived inhibitors of glycogen phosphorylase. C R Chim. 2011;14:211–23. https://doi.org/10.1016/j.crci.2010.09.004

Article  CAS  Google Scholar 

Rath VL, Ammirati M, Danley DE, Ekstrom JL, Gibbs EM, Hynes TR, et al. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol. 2000;7:677–82. https://doi.org/10.1016/S1074-5521(00)00004-1

Article  CAS  PubMed  Google Scholar 

Wang Y, Li S, Yan Z, Zhang L. Computational insights into novel inhibitor N-(3-(tert-Butylcarbamoyl)-4-methoxyphenyl)-indole and ingliforib specific against GP isoenzyme dimers interaction mechanism. Molecules. 2023;28:4909 https://doi.org/10.3390/molecules28134909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeman S, Bartlett JB, Convey G, Hardern I, Teague JL, Loxham SJ, et al. Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme. Br J Pharmacol. 2006;49:775–85. https://doi.org/10.1038/sj.bjp.0706925

Article  CAS  Google Scholar 

Oikonomakos NG, Skamnaki VT, Tsitsanou KE, Gavalas NG, Johnson LN. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure. 2000;8:575–84. https://doi.org/10.1016/s0969-2126(00)00144-1

Article  CAS  PubMed  Google Scholar 

Onda K, Suzuki T, Shiraki R, Yonetoku Y, Negoro K, Momose K, et al. Synthesis of 5-chloro-N-aryl-1H-indole-2-carboxamide derivatives as inhibitors of human liver glycogen phosphorylase a. Bioorg Med Chem. 2008;16:5452–64. https://doi.org/10.1016/j.bmc.2008.04.010

Article  CAS  PubMed  Google Scholar 

Ragno R, Coluccia A, Regina GL, Martino GD, Piscitelli F, Lavecchia A, et al. Design, molecular modeling, synthesis, and anti-HIV-1 activity of new indolyl aryl sulfones. Novel derivatives of the indole-2-carboxamide. J Med Chem. 2006;49:3172–84. https://doi.org/10.1021/jm0512490

Article  CAS  PubMed  Google Scholar 

Andersen B, Westergaard N. The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors. Biochem J. 2002;367:443–50. https://doi.org/10.1042/bj20020153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Song C, Miao G, Zhao L, Yan Z, Wang Y. Novel liver-targeted conjugates of glycogen phosphorylase inhibitor PSN-357 for the treatment of diabetes: design, synthesis, pharmacokinetic and pharmacological evaluations. Sci Rep. 2017;7:42251 https://doi.org/10.1038/srep42251

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arunrattiyakorn P, Kuno M, Aree T, Laphookhieo S, Sriyatep T, Kanzaki H, et al. Biotransformation of β‑mangostin by an endophytic fungus of Garcinia mangostana to furnish xanthenes with an unprecedented heterocyclic skeleton. J Nat Prod. 2018;81:2244–2250. https://doi.org/10.1021/acs.jnatprod.8b00519

Article  CAS  PubMed  Google Scholar 

Arunrattiyakorn P, Suwannasai S, Aree T, Kanokmedhakul S, Ito H, Kanzaki H. Biotransformation of α-mangostin by Collectotrichum sp. MT02 and Phomopsis euphorbiae K12. J Mol Catal B Enzym. 2014;102:174–9. https://doi.org/10.1016/j.molcatb.2014.02.010

Article  CAS  Google Scholar 

Henkel T, Mueller H, Schmidt D, Wollweber H. New natural Substances of hyphodermins and chemical derivatives. Ger. Offen. DE. 1997:19611366

Loughlin WA, Pierens GK, Petersson MJ, Henderson LC, Healy PC. Evaluation of novel hyphodermin derivatives as glycogen phosphorylase a inhibitors. Bioorg Med Chem. 2008;16:6172–8. https://doi.org/10.1016/j.bmc.2008.04.047

Article  CAS  PubMed  Google Scholar 

Leonidas DD, Zographos SE, Tsitsanou KE, Skamnaki VT, Stravodimos G, Kyriakis E. Glycogen phosphorylase revisited: extending the resolution of the R- and T-state structures of the free enzyme and in complex with allosteric activators. Acta crystallogr. 2021;77:303–11. https://doi.org/10.1107/S2053230X21008542

Article  CAS  Google Scholar 

Hoover DJ, Lefkowitz-Snow S, Burgess-Henry JL, Martin WH, Armento SJ, Stock IA, et al. Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J Med Chem. 1998;41:2934–8. https://doi.org/10.1021/jm980264k

Article  CAS  PubMed  Google Scholar 

Bruker. APEX2 v. 2014.9-0, Bruker AXS Inc., Madison, WI, 2014.

Bruker SHELXTL XT. Program for crystal structure solution, v. (2014)/4. Madison, WI: Bruker AXS Inc.; 2014.

Google Scholar 

Bruker. SHELXTL XLMP Program for crystal structure refinement - Multi-CPU. Madison, WI: Bruker AXS Inc.; 2014. v. 2014/7

Google Scholar 

Kyriakis E, Solovou TGA, Kun S, Czifrák K, Szőcs B, Juhász L, et al. Probing the β-pocket of the active site of human liver glycogen phosphorylase with 3-(C-β-D-glucopyranosyl)-5-(4-substituted-phenyl)-1, 2, 4-triazole inhibitors. Bioorg Chem. 2018;77:485–93. https://doi.org/10.1016/j.bioorg.2018.02.008

Article  CAS  PubMed  Google Scholar 

Saheki S, Takeda A, Shimazu T. Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity. Anal Biochem. 1985;148:277–81. https://doi.org/10.1016/0003-2697(85)90229-5

Article 

Comments (0)

No login
gif