Multi-modal dataset creation for federated learning with DICOM-structured reports

Bridge C, Gorman C, Pieper S, Doyle S, Lennerz J, Kalpathy-Cramer J, Clunie D, Fedorov A, Herrmann M (2022) Highdicom: a python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology. J Digit Imaging 35(6):1719–1737. https://doi.org/10.1007/s10278-022-00683-y

Article  PubMed  PubMed Central  Google Scholar 

Chambon P, Bluethgen C, Delbrouck JB, Van der Sluijs R, Polacin M, Chaves JMZ, Abraham TM, Purohit S, Langlotz CP, Chaudhari A (2022) Roentgen: vision-language foundation model for chest X-ray generation. https://doi.org/10.48550/arxiv.2211.12737

Clunie DA (2000) DICOM Structured Reporting. PixelMed. http://www.dclunie.com/pixelmed/DICOMSR.book.pdf

Clunie DA (2007) Dicom structured reporting and cancer clinical trials results. Cancer Inf 4:33–56. https://doi.org/10.4137/CIN.S37032

Article  Google Scholar 

Fedorov A, Longabaugh WJR, Pot D, Clunie DA, Pieper SD, Gibbs DL, Bridge C, Herrmann MD, Homeyer A, Lewis R, Aerts HJWL, Krishnaswamy D, Thiriveedhi VK, Ciausu C, Schacherer DP, Bontempi D, Pihl T, Wagner U, Farahani K, Kim E et al (2023) National cancer institute imaging data commons: toward transparency, reproducibility, and scalability in imaging artificial intelligence. Radiographics. https://doi.org/10.1148/rg.230180

Article  PubMed  Google Scholar 

Gazzarata R, Almeida J, Lindsköld L, Cangioli G, Gaeta E, Fico G, Chronaki CE (2024) Hl7 fast healthcare interoperability resources (hl7 fhir) in digital healthcare ecosystems for chronic disease management: Scoping review. Int J Med In. https://doi.org/10.1016/j.ijmedinf.2024.105507

Article  Google Scholar 

Généreux P, Head SJ, Wood DA, Kodali SK, Williams MR, Paradis JM, Spaziano M, Kappetein AP, Webb JG, Cribier A, Leon MB (2012) Transcatheter aortic valve implantation 10-year anniversary: review of current evidence and clinical implications. Eur Heart J 33(19):2388–2398. https://doi.org/10.1093/eurheartj/ehs220

Article  PubMed  Google Scholar 

Kavur AE, Gezer NS, Barış M, Aslan S, Conze PH, Groza V, Pham DD, Chatterjee S, Ernst P, Özkan S, Baydar B, Lachinov D, Han S, Pauli J, Isensee F, Perkonigg M, Sathish R, Rajan R, Sheet D, Dovletov G et al (2021) CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation. Med Image Anal. https://doi.org/10.1016/j.media.2020.101950

Article  PubMed  Google Scholar 

Krishnaswamy D, Bontempi D, Thiriveedhi VK, Punzo D, Clunie D, Bridge CP, Aerts HJWL, Kikinis R, Fedorov A (2024) Enrichment of lung cancer computed tomography collections with ai-derived annotations. Sci Data 11(1):25. https://doi.org/10.1038/s41597-023-02864-y

Article  PubMed  PubMed Central  Google Scholar 

Landman B, Xu Z, Igelsias J, Styner M, Langerak T, Klein A (2015) Multi-atlas labeling beyond the cranial vault-workshop and challenge. In: MICCAI multi-atlas labeling beyond the cranial vault-workshop and challenge. https://doi.org/10.7303/SYN3193805

Lazarova E, Mora S, Maggi N, Ruggiero C, Vitale AC, Rubartelli P, Giacomini M (2022) An interoperable electronic health record system for clinical cardiology. Informatics. https://doi.org/10.3390/informatics9020047

Martín-Isla C, Campello VM, Izquierdo C, Kushibar K, Sendra-Balcells C, Gkontra P, Sojoudi A, Fulton MJ, Arega TW, Punithakumar K, Li L, Sun X, Al Khalil Y, Liu D, Jabbar S, Queirós S, Galati F, Mazher M, Gao Z, Beetz M et al (2023) Deep learning segmentation of the right ventricle in cardiac MRI: the M &Ms challenge. IEEE J Biomed Health Inform 27(7):3302–3313. https://doi.org/10.1109/JBHI.2023.3267857

Article  PubMed  Google Scholar 

Nobel M, van Geel K, Robben S (2022) Structured reporting in radiology. Eur Radiol 32:2837–2854. https://doi.org/10.1007/s00330-021-08327-5

Article  PubMed  Google Scholar 

Noumeir R (2006) Benefits of the DICOM structured report. J Digit Imaging 16(4):295–306. https://doi.org/10.1007/s10278-006-0631-7

Article  Google Scholar 

Oquab M, Darcet T, Moutakanni T, Vo HV, Szafraniec M, Khalidov V, Fernandez P, HAZIZA D, Massa F, El-Nouby A, Assran M, Ballas N, Galuba W, Howes R, Huang PY, Li SW, Misra I, Rabbat M, Sharma V, Synnaeve G, et al (2024) DINOv2: learning robust visual features without supervision. Trans Mach Learn Res. https://doi.org/10.48550/arXiv.2304.07193

Pei X, Zuo K, Li Y, Pang Z (2023) A review of the application of multi-modal deep learning in medicine: Bibliometrics and future directions. Int J Comput Intell Syst 16:1. https://doi.org/10.1007/s44196-023-00225-6

Article  Google Scholar 

Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, Ourselin S, Sheller M, Summers RM, Trask A, Xu D, Baust M, Cardoso MJ (2020) The future of digital health with federated learning. npj Dig Med 3(119):2398–6352. https://doi.org/10.1038/s41746-020-00323-1

Article  Google Scholar 

Riepenhausen S, Blumenstock M, Niklas C, Hegselmann S, Neuhaus P, Meidt A, Püttmann C, Storck M, Ganzinger M, Varghese J, Dugas M (2024) Europe’s largest research infrastructure for curated medical data models with semantic annotations. Methods Inf Med EFirst. https://doi.org/10.1055/s-0044-1786839

Article  Google Scholar 

Roth CJ, Lannum LM, Persons KR (2016) A foundation for enterprise imaging: Himss–Siim collaborative white paper. J Digit Imaging 29(5):530–538. https://doi.org/10.1007/s10278-016-9882-0

Article  PubMed  PubMed Central  Google Scholar 

Saltz J, Saltz M, Prasanna P, Moffitt R, Hajagos J, Bremer E, Balsamo J, Kurc T (2021) Stony Brook University COVID-19 positive cases. Cancer Imaging Arch. https://doi.org/10.7937/TCIA.BBAG-2923

Article  Google Scholar 

Scherer J, Nolden M, Kleesiek J, Metzger J, Kades K, Schneider V, Bach M, Sedlaczek O, Bucher AM, Vogl TJ, Grünwald F, Kühn JP, Hoffmann RT, Kotzerke J, Bethge O, Schimmöller L, Antoch G, Müller HW, Daul A, Nikolaou K et al (2020) Joint imaging platform for federated clinical data analytics. JCO Clin Cancer Inf 4:1027–1038. https://doi.org/10.1200/CCI.20.00045

Article  Google Scholar 

Seidler T, Tölle M, André F, Bannas P, Frey N, Friedrich S, Groß S, Hennemuth A, Krüger N, Leha A, Martin S, Meyer A, Nagel E, Orwat S, Scherer C, Simm TStefan Friede, Engelhardt S, (2022) Federated learning of TAVI outcomes (FLOTO)—a collaborative multi-center deep learning initiative. Clin Res Cardiol. https://doi.org/10.1007/s00392-022-02002-5

Thrasher J, Devkota A, Siwakotai P, Chivukula R, Poudel P, Hu C, Bhattarai B, Gyawali P (2024) Multimodal federated learning in healthcare: a review. https://doi.org/10.48550/arXiv.2310.09650

Tölle M, Burger L, Kelm H, Engelhardt S (2024) Towards unified multi-modal dataset creation for deep learning utilizing structured reports. Bildverarbeitung für die Medizin 2024:130–135. https://doi.org/10.1007/978-3-658-44037-4_39

Tölle M, Garthe P, Scherer C, Seliger JM, Leha A, Krüger N, Simm S, Martin S, Eble S, Kelm H, Bednorz M, André F, Bannas P, Diller G, Frey N, Groß S, Hennemuth A, Kaderali L, Meyer A, Nagel E, et al (2024) Real World Federated Learning with a Knowledge Distilled Transformer for Cardiac CT Imaging.npj Digital Medicine https://doi.org/10.1038/s41746-025-01434-3

Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter AW, Heye T, Boll D, Cyriac J, Yang S, Bach M, Segeroth M (2023) TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. Radiol Artif Intell. https://doi.org/10.1148/ryai.230024

Comments (0)

No login
gif