Kröner PT, Bilal M, Samuel R, Umar S, Abougergi MS, Lukens FJ, Raimondo M, Carr-Locke DL (2020) Use of ercp in the united states over the past decade. Endoscopy Int Open 8(06):761–769
Dumonceau J-M, Kapral C, Aabakken L, Papanikolaou IS, Tringali A, Vanbiervliet G, Beyna T, Dinis-Ribeiro M, Hritz I, Mariani A, Paspatis G, Radaelli F, Lakhtakia S, Veitch AM, Hooft J (2020) Ercp-related adverse events: European society of gastrointestinal endoscopy (esge) guideline. Endoscopy 52(02):127–149
Chahal P, Baron TH (2019) 45 - ercp and eus for acute and chronic adverse events of pancreatic surgery and pancreatic trauma. ERCP (Third Edition), Third, edition. Elsevier, Philadelphia, pp 432–4402
Cotton PB (1977) Ercp. Gut 18(4):316
Article CAS PubMed Google Scholar
Sheppard D, Craddock S, Warner B, Wilkinson M (2015) Ercp cannulation success benchmarking: implications for certification and validation. Front Gastroenterol 6(2):141–146
Jiang W, Zhou Y, Wang C, Peng L, Yang Y, Liu H (2020) Navigation strategy for robotic soft endoscope intervention. Int J Med Robot Comput Assisted Surg 16(2):2056
Boehler Q, Gage DS, Hofmann P, Gehring A, Chautems C, Spahn DR, Biro P, Nelson BJ (2020) Realiti: a robotic endoscope automated via laryngeal imaging for tracheal intubation. IEEE Trans Med Robot Bionics 2(2):157–164
He Q, Bano S, Ahmad OF, Yang B, Chen X, Valdastri P, Lovat LB, Stoyanov D, Zuo S (2020) Deep learning-based anatomical site classification for upper gastrointestinal endoscopy. Int J Comput Assist Radiol Surg 15:1085–1094
Article PubMed PubMed Central Google Scholar
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)
Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: Single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37 . Springer
Ultralytics: YOLOv5. https://github.com/ultralytics/yolov5 (2020)
Ultralytics: YOLOv8. https://github.com/ultralytics/ultralytics (2023)
Vukicevic AM, Stojadinovic M, Radovic M, Djordjevic M, Cirkovic BA, Pejovic T, Jovicic G, Filipovic N (2016) Automated development of artificial neural networks for clinical purposes: Application for predicting the outcome of choledocholithiasis surgery. Comput Biol Med 75:80–89
Wang J, Chen P, Yu H-G (2023) Real-time deep learning-based system for colorectal polyp size estimation by white-light endoscopy: A multicenter study. Gastrointest Endosc 97(6):471
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, Proceedings, Part V 13, pp. 740–755. Springer
Pohl J (2013) Choledocholithiasis-sphincterotomy and stone removal with an extraction balloon. Video J Encyclopedia GI Endoscopy 1(2):445–446
Pohl J (2013) Normal endoscopic retrograde cholangiopancreatography. Video J Encyclopedia GI Endoscopy 1(2):507–509
Monzahmed: ERCP Videos. https://www.youtube.com/@monzahmed
Wang C-Y, Liao H-YM, Wu Y-H, Chen P-Y, Hsieh J-W, Yeh I-H. (2020) Cspnet: a new backbone that can enhance learning capability of cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022
Zheng Z, Wang P, Ren D, Liu W, Ye R, Hu Q, Zuo W (2021) Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans Cybernetics 52(8):8574–8586
Yin T, Zhou X, Krahenbuhl P (2021): Center-based 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793
Woo S, Park J, Lee J-Y, Kweon IS (2018) Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inform Process Syst 30(2017):5998–6008
Zhang Y, Ye M, Zhu G, Liu Y, Guo P, Yan J (2024) Ffca-yolo for small object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing
Comments (0)