A deep learning-driven method for safe and effective ERCP cannulation

Kröner PT, Bilal M, Samuel R, Umar S, Abougergi MS, Lukens FJ, Raimondo M, Carr-Locke DL (2020) Use of ercp in the united states over the past decade. Endoscopy Int Open 8(06):761–769

Article  Google Scholar 

Dumonceau J-M, Kapral C, Aabakken L, Papanikolaou IS, Tringali A, Vanbiervliet G, Beyna T, Dinis-Ribeiro M, Hritz I, Mariani A, Paspatis G, Radaelli F, Lakhtakia S, Veitch AM, Hooft J (2020) Ercp-related adverse events: European society of gastrointestinal endoscopy (esge) guideline. Endoscopy 52(02):127–149

Article  PubMed  Google Scholar 

Chahal P, Baron TH (2019) 45 - ercp and eus for acute and chronic adverse events of pancreatic surgery and pancreatic trauma. ERCP (Third Edition), Third, edition. Elsevier, Philadelphia, pp 432–4402

Google Scholar 

Cotton PB (1977) Ercp. Gut 18(4):316

Article  CAS  PubMed  Google Scholar 

Sheppard D, Craddock S, Warner B, Wilkinson M (2015) Ercp cannulation success benchmarking: implications for certification and validation. Front Gastroenterol 6(2):141–146

Article  CAS  Google Scholar 

Jiang W, Zhou Y, Wang C, Peng L, Yang Y, Liu H (2020) Navigation strategy for robotic soft endoscope intervention. Int J Med Robot Comput Assisted Surg 16(2):2056

Article  Google Scholar 

Boehler Q, Gage DS, Hofmann P, Gehring A, Chautems C, Spahn DR, Biro P, Nelson BJ (2020) Realiti: a robotic endoscope automated via laryngeal imaging for tracheal intubation. IEEE Trans Med Robot Bionics 2(2):157–164

Article  Google Scholar 

He Q, Bano S, Ahmad OF, Yang B, Chen X, Valdastri P, Lovat LB, Stoyanov D, Zuo S (2020) Deep learning-based anatomical site classification for upper gastrointestinal endoscopy. Int J Comput Assist Radiol Surg 15:1085–1094

Article  PubMed  PubMed Central  Google Scholar 

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)

Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: Single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37 . Springer

Ultralytics: YOLOv5. https://github.com/ultralytics/yolov5 (2020)

Ultralytics: YOLOv8. https://github.com/ultralytics/ultralytics (2023)

Vukicevic AM, Stojadinovic M, Radovic M, Djordjevic M, Cirkovic BA, Pejovic T, Jovicic G, Filipovic N (2016) Automated development of artificial neural networks for clinical purposes: Application for predicting the outcome of choledocholithiasis surgery. Comput Biol Med 75:80–89

Article  PubMed  Google Scholar 

Wang J, Chen P, Yu H-G (2023) Real-time deep learning-based system for colorectal polyp size estimation by white-light endoscopy: A multicenter study. Gastrointest Endosc 97(6):471

Article  Google Scholar 

Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, Proceedings, Part V 13, pp. 740–755. Springer

Pohl J (2013) Choledocholithiasis-sphincterotomy and stone removal with an extraction balloon. Video J Encyclopedia GI Endoscopy 1(2):445–446

Article  Google Scholar 

Pohl J (2013) Normal endoscopic retrograde cholangiopancreatography. Video J Encyclopedia GI Endoscopy 1(2):507–509

Article  Google Scholar 

Monzahmed: ERCP Videos. https://www.youtube.com/@monzahmed

Wang C-Y, Liao H-YM, Wu Y-H, Chen P-Y, Hsieh J-W, Yeh I-H. (2020) Cspnet: a new backbone that can enhance learning capability of cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022

Zheng Z, Wang P, Ren D, Liu W, Ye R, Hu Q, Zuo W (2021) Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans Cybernetics 52(8):8574–8586

Article  Google Scholar 

Yin T, Zhou X, Krahenbuhl P (2021): Center-based 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793

Woo S, Park J, Lee J-Y, Kweon IS (2018) Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inform Process Syst 30(2017):5998–6008

Google Scholar 

Zhang Y, Ye M, Zhu G, Liu Y, Guo P, Yan J (2024) Ffca-yolo for small object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing

Comments (0)

No login
gif