Development and validation of a surgical robot system for orbital decompression surgery

Bartalena L, Pinchera A, Marcocci C (2000) Management of Graves’ ophthalmopathy: reality and perspectives. Endocr Rev 21:168–199. https://doi.org/10.1210/edrv.21.2.0393

Article  PubMed  CAS  Google Scholar 

Bartalena L (2012) Prevention of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 26:371–379. https://doi.org/10.1016/j.beem.2011.09.004

Article  PubMed  Google Scholar 

Kels BD, Grzybowski A, Grant-Kels JM (2015) Human ocular anatomy. Clin Dermatol 33:140–146. https://doi.org/10.1016/j.clindermatol.2014.10.006

Article  PubMed  Google Scholar 

Boffano P, Roccia F, Gallesio C, Karagozoglu KH, Forouzanfar T (2014) Diplopia and orbital wall fractures. J Craniofac Surg 25:e183. https://doi.org/10.1097/SCS.0000000000000437

Article  PubMed  Google Scholar 

Mourits MP, Bijl H, Altea MA, Baldeschi L, Boboridis K, Curro N, Dickinson AJ, Eckstein A, Freidel M, Guastella C, Kahaly GJ, Kalmann R, Krassas GE, Lane CM, Lareida J, Marcocci C, Marino M, Nardi M, Mohr C, Neoh C, Pinchera A, Orgiazzi J, Pitz S, Saeed P, Salvi M, Sellari-Franceschini S, Stahl M, von Arx G, Wiersinga WM, EUGOGO (2009) Outcome of orbital decompression for disfiguring proptosis in patients with Graves’ orbitopathy using various surgical procedures. Br J Ophthalmol 93:1518–1523. https://doi.org/10.1136/bjo.2008.149302

Article  PubMed  CAS  Google Scholar 

Fichter N, Schittkowski M, Vick H, Guthoff R (2004) Lateral orbital decompression for Graves’ orbitopathy. Indication, surgical technique, and treatment success. Ophthalmologe 101:339–349. https://doi.org/10.1007/s00347-004-1008-2

Article  PubMed  CAS  Google Scholar 

Ansari MW, Nadeem A (2016) Atlas of ocular anatomy. Springer

Book  Google Scholar 

Paridaens D, Verhoeff K, Bouwens D, van den Bosch W (2000) Transconjunctival orbital decompression in Graves’ ophthalmopathy: lateral wall approach ab interno. Br J Ophthalmol 84:775–781. https://doi.org/10.1136/bjo.84.7.775

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schaefer SD, Soliemanzadeh P, Della Rocca DA, Yoo G-P, Maher EA, Milite JP, Della Rocca RC (2003) Endoscopic and transconjunctival orbital decompression for thyroid-related orbital apex compression. Laryngoscope 113:508–513. https://doi.org/10.1097/00005537-200303000-00021

Article  PubMed  Google Scholar 

Xiaojun C, Chengtao W, Yanping L (2006) A computer-aided oral implantology system. In: 2005 27th Annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No.05CH37611C)

Peters TM (2006) Image-guidance for surgical procedures. Phys Med Biol 51:R505. https://doi.org/10.1088/0031-9155/51/14/R01

Article  PubMed  Google Scholar 

Chapuis J, Rudolph T, Borgesson B, Momi ED, Pappas IP, Hallermann W, Schramm A, Caversaccio M (2004) 3D surgical planning and navigation for CMF surgery. In: Jr RLG (ed) Medical imaging 2004: visualization, image-guided procedures, and display. SPIE, pp 403–410

Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbeck’s Arch Surg 398:501–514. https://doi.org/10.1007/s00423-013-1059-4

Article  Google Scholar 

Paul HA, Mittlestadt B, Bargar WL, Musits B, Taylor RH, Kazanzides P, Zuhars J, Williamson B, Hanson W (1992) A surgical robot for total hip replacement surgery. In: Proceedings 1992 IEEE international conference on robotics and automation, vol 1, pp 606–611

Liao H, Yoshimura K, Utsugida T, Matsumiya K, Masamune K, Dohi T (2007) Surgical manipulator with linkage mechanism for anterior cruciate ligament reconstruction. In: 2007 IEEE/RSJ international conference on intelligent robots and systems, pp 1266–1271

Unger SW, Unger HM, Bass RT (1994) AESOP robotic arm. Surg Endosc 8:1131–1131. https://doi.org/10.1007/BF00705739

Article  PubMed  CAS  Google Scholar 

Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, Butner SE, Smith MK (2001) Transatlantic robot-assisted telesurgery. Nature 413:379–380. https://doi.org/10.1038/35096636

Article  PubMed  CAS  Google Scholar 

Sun L-W, Van Meer F, Bailly Y, Yeung CK (2007) Design and development of a da vinci surgical system simulator. In: 2007 International conference on mechatronics and automation, pp 1050–1055

Mitchell B, Koo J, Iordachita M, Kazanzides P, Kapoor A, Handa J, Hager G, Taylor R (2007) Development and application of a new steady-hand manipulator for retinal surgery. In: 2007 IEEE international conference on robotics and automation (IEEE Cat No. 07CH37836D)

Üneri A, Balicki MA, Handa J, Gehlbach P, Taylor RH, Iordachita I (2010) New steady-hand eye robot with micro-force sensing for vitreoretinal surgery. In: 2010 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics, pp 814–819

Shin HG, Park I, Kim K, Kim HK, Chung WK (2021) Corneal suturing robot capable of producing sutures with desired shape for corneal transplantation surgery. IEEE Trans Rob 37:304–312. https://doi.org/10.1109/TRO.2020.3031885

Article  Google Scholar 

Wang Y, Sun J, Liu X, Li Y, Fan X, Zhou H (2022) Robot-assisted orbital fat decompression surgery: first in human. Transl Vis Sci Technol 11:8–8. https://doi.org/10.1167/tvst.11.5.8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mattheis S, Schlüter A, Stähr K, Holtmann L, Höing B, Hussain T, Kanaan O, Eckstein A, Lang S (2021) First use of a new robotic endoscope guiding system in endoscopic orbital decompression. Ear Nose Throat J 100:443S-448S. https://doi.org/10.1177/0145561319885803

Article  PubMed  Google Scholar 

Rootman J (2014) Orbital surgery: a conceptual approach, 2e. Lippincott Williams & Wilkins, a Wolters Kluwer business

Ediriwickrema LS, Korn BS, Kikkawa DO (2018) Orbital decompression for thyroid-related orbitopathy during the quiescent phase. Ophthalmic Plast Reconstr Surg 34:S90–S97

Article  PubMed  Google Scholar 

Braun TL, Bhadkamkar MA, Jubbal KT, Weber AC, Marx DP (2017) Orbital decompression for thyroid eye disease. In: Seminars in plastic surgery. Thieme Medical Publishers, pp 040–045

Kuo C-H, Dai JS, Dasgupta P (2012) Kinematic design considerations for minimally invasive surgical robots: an overview. Int J Med Robot Comput Assist Surg 8:127–145. https://doi.org/10.1002/rcs.453

Article  Google Scholar 

Kyllar M, Štembírek J, Danek Z, Hodan R, Stránský J, Machoň V, Foltán R (2016) A porcine model: surgical anatomy of the orbit for maxillofacial surgery. Lab Anim 50:125–136

Article  PubMed  Google Scholar 

Xu C, Lin L, Mar Aung Z, Chai G, Xie L (2021) Research on spatial motion safety constraints and cooperative control of robot-assisted craniotomy: Beagle model experiment verification. Int J Med Robot Comput Assist Surg 17:e2231. https://doi.org/10.1002/rcs.2231

Article  Google Scholar 

Pietruski P, Majak M, Światek-Najwer E, Popek M, Jaworowski J, Zuk M, Nowakowski F (2015) Image-guided bone resection as a prospective alternative to cutting templates—a preliminary study. J Cranio-Maxillofac Surg 43:1021–1027. https://doi.org/10.1016/j.jcms.2015.06.012

Article  Google Scholar 

Tel A, Murta F, Sembronio S, Costa F, Robiony M (2022) Virtual planning and navigation for targeted excision of intraorbital space-occupying lesions: proposal of a computer-guided protocol. Int J Oral Maxillofac Surg 51:269–278. https://doi.org/10.1016/j.ijom.2021.07.013

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif