TRUSWorthy: toward clinically applicable deep learning for confident detection of prostate cancer in micro-ultrasound

Ahmed H, Bosaily A, Brown L, Gabe R, Kaplan R, Parmar M, Collaco-Moraes Y, Ward K, Hindley R, Freeman A, Kirkham A, Oldroyd R, Parker C, Emberton M, Group P (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822

Article  PubMed  Google Scholar 

Halpern E (2006) Contrast-enhanced ultrasound imaging of prostate cancer. Rev Urology 8:S29

Google Scholar 

Fooladgar F, To M, Javadi G, Samadi S, Bayat S, Sojoudi S, Eshumani W, Hurtado A, Chang S, Black P, Mousavi P, Abolmaesumi P (2022) Uncertainty-Aware Deep Ensemble Model For Targeted Ultrasound-Guided Prostate Biopsy. In: 2022 IEEE 19th International Symposium On Biomedical Imaging (ISBI). pp 1-5

Postema A, Mischi M, De La Rosette J, Wijkstra H (2015) Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urology 33:1651–1659

Article  Google Scholar 

Pallwein L, Mitterberger M, Struve P, Pinggera G, Horninger W, Bartsch G, Aigner F, Lorenz A, Pedross F, Frauscher F (2007) Real-time elastography for detecting prostate cancer: preliminary experience. BJU Int 100:42–46

Article  PubMed  Google Scholar 

Klotz C (2020) Can high resolution micro-ultrasound replace MRI in the diagnosis of prostate cancer? Eur Urology Focus 6:419–423

Article  Google Scholar 

Feng Y, Yang F, Zhou X, Guo Y, Tang F, Ren F, Guo J, Ji S (2018) A deep learning approach for targeted contrast-enhanced ultrasound based prostate cancer detection. IEEE/ACM Trans Comput Biol Bioinf 16:1794–1801

Article  Google Scholar 

Soerensen S, Fan R, Seetharaman A, Chen L, Shao W, Bhattacharya I, Kim Y, Sood R, Borre M, Chung B, To’o JK, Rusu M, Sonn G (2021) Deep learning improves speed and accuracy of prostate gland segmentations on magnetic resonance imaging for targeted biopsy. J Urology 206:604–612

Article  Google Scholar 

Shao Y, Wang J, Wodlinger B, Salcudean S (2020) Improving prostate cancer (PCa) classification performance by using three-player minimax game to reduce data source heterogeneity. IEEE Trans Med Imaging 39:3148–3158

Article  PubMed  Google Scholar 

Guo C, Pleiss G, Sun Y, Weinberger K (2017) On calibration of modern neural networks. International Conference On Machine Learning. pp 1321-1330

Li J, Li W, Sisk A, Ye H, Wallace W, Speier W, Arnold C (2021) A multi-resolution model for histopathology image classification and localization with multiple instance learning. Comput Biol Med 131:104253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulten W, Kartasalo K, Chen P, Ström P, Pinckaers H, Nagpal K, Cai Y, Steiner D, Boven H, Vink R, Kaa C, Laak J, Amin M, Evans A, Kwast T, Allan R, Humphrey P, Grönberg H, Samaratunga H, Delahunt B, Tsuzuki T, Häkkinen T, Egevad L, Demkin M, Dane S, Tan F, Valkonen MSC, Peng L, Mermel C, Ruusuvuori P, Litjens G, Eklund M (2022) Consortium Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Med 28:154–163

Article  CAS  PubMed  Google Scholar 

Fujita Y, Ishihara K, Nakata K, Hamamoto Y, Segawa M, Sakaida I, Mitani Y, Terai S (2022) Weakly supervised multiple instance learning for liver cirrhosis classification using ultrasound images. Int Conf Intell Inf Biomed Sci(ICIIBMS) 7:225–229

Google Scholar 

Gilany M, Wilson P, Perera-Ortega A, Jamzad A, To M, Fooladgar F, Wodlinger B, Abolmaesumi P, Mousavi P (2023) TRUSformer: improving prostate cancer detection from micro-ultrasound using attention and self-supervision. Int J Comput Assisted Radiology Surgery 18(7):1193–1200

Article  Google Scholar 

Ali A, Samir A, Guo P (2023) Self-Supervised Learning for Accurate Liver View Classification in Ultrasound Images With Minimal Labeled Data. In: Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. pp 3086-3092

Seiffert C, Khoshgoftaar T, Van Hulse J, Napolitano A (2009) RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Trans Syst, Man, And Cybernetics-part A: Syst Humans 40:185–197

Article  Google Scholar 

Judge T, Bernard O, Porumb M, Chartsias A, Beqiri A, Jodoin P (2022) CRISP - Reliable uncertainty estimation for medical image segmentation. In: International Conference On Medical Image Computing And Computer Assisted Intervention. pp 492-502

Xie Y, Liao H, Zhang D, Chen F (2022) Uncertainty-aware Cascade Network for Ultrasound Image Segmentation with Ambiguous Boundary. In: International Conference On Medical Image Computing And Computer-Assisted Intervention. pp 268-278

Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. Advances In Neural Information Processing Systems. 30

Bardes A, Ponce J, LeCun Y (2021) Vicreg: Variance-invariance-covariance regularization for self-supervised learning. ArXiv Preprint ArXiv:2105.04906

Wilson P, Gilany M, Jamzad A, Fooladgar F, To M, Wodlinger B, Abolmaesumi P, Mousavi P (2023) Self-supervised learning with limited labeled data for prostate cancer detection in high frequency ultrasound. IEEE Transactions On Ultrasonics, Ferroelectrics, And Frequency Control

Book  Google Scholar 

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Advances In Neural Information Processing Systems. 30

Gilany M, Wilson P, Jamzad A, Fooladgar F, To M, Wodlinger B, Abolmaesumi P, Mousavi P (2022) Towards confident detection of prostate cancer using high resolution micro-ultrasound. In: International Conference On Medical Image Computing And Computer Assisted Intervention. pp 411-420

Gontijo-Lopes R, Dauphin Y, Cubuk E (2021) No one representation to rule them all: Overlapping features of training methods. ArXiv Preprint ArXiv:2110.12899

Klotz L, Lughezzani G, Maffei D, Sánchez A, Pereira J, Staerman F, Cash H, Luger F, Lopez L, Sanchez-Salas R, Abouassaly R, Shore N, Eure G, Paciotti M, Astobieta A, Wiemer L, Hofbaeur S, Heckmann R, Gusenleitner A, Kaar J, Mayr C, Loidl W, Rouffilange J, Gaston R, Cathelineau X, Klein E (2021) Comparison of micro-ultrasound and multiparametric magnetic resonance imaging for prostate cancer: A multicenter, prospective analysis. Canadian Urological Association J 15:E11

Rohrbach D, Wodlinger B, Wen J, Mamou J, Feleppa E (2018) High-frequency quantitative ultrasound for imaging prostate cancer using a novel micro-ultrasound scanner. Ultrasound Med Biol 44:1341–1354

Dias N, Colandrea G, Botelho F, Rodriguez-Sanchez L, Lanz C, Macek P, Cathelineau X (2023) Diagnostic accuracy and clinical utility of micro-ultrasound guided biopsies in patients with suspected prostate cancer. Central Eur J Urology 76:25

Comments (0)

No login
gif