Åberg ND, Brywe KG, Isgaard J (2006) Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 6:53–80. https://doi.org/10.1100/tsw.2006.22
Adlerz L, Holback S, Multhaup G, Iverfeldt K (2007) IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem 282(14):10203–10209. https://doi.org/10.1074/jbc.M611183200
Article CAS PubMed Google Scholar
Aguado-Llera D, Canelles S, Frago LM, Chowen JA, Argente J, Arilla E, Barrios V (2018) The protective effects of IGF-I against β-amyloid-related downregulation of hippocampal somatostatinergic system involve activation of Akt and protein kinase a. Neuroscience 374:104–118. https://doi.org/10.1016/j.neuroscience.2018.01.041
Article CAS PubMed Google Scholar
Ano Y, Ohya R, Takaichi Y, Washinuma T, Uchida K, Takashima A, Nakayama H (2020) Β-lactolin, a whey-derived lacto-tetrapeptide, prevents Alzheimer’s disease pathologies and cognitive decline. J Alzheimer’s Dis 73(4):1331–1342. https://doi.org/10.3233/JAD-190997
Arjunan A, Sah DK, Woo M, Song J (2023) Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 13(1):16. https://doi.org/10.1186/s13578-023-00966-z
Article CAS PubMed Central PubMed Google Scholar
Bagyinszky E, Van Giau V, Shim K, Suk K, An SS, Kim S (2017) Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci 376:242–254. https://doi.org/10.1016/j.jns.2017.03.031
Article CAS PubMed Google Scholar
Baker LD, Barsness SM, Borson S, Merriam GR, Friedman SD, Craft S, Vitiello MV (2012) Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch Neurol 69(11):1420–1429. https://doi.org/10.1001/archneurol.2012.1970
Article PubMed Central PubMed Google Scholar
Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F, Landrieu I (2019) Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci 11:204. https://doi.org/10.3389/fnagi.2019.00204
Article CAS PubMed Central PubMed Google Scholar
Bhalla S, Mehan S, Khan A, Rehman MU (2022) Protective role of IGF-1 and GLP-1 signaling activation in neurological dysfunctions. Neurosci Biobehav Rev 142:104896. https://doi.org/10.1016/j.neubiorev.2022.104896
Article CAS PubMed Google Scholar
Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31(1):292–297. https://doi.org/10.1042/bst0310292
Article CAS PubMed Google Scholar
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM (2014) Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 5:161. https://doi.org/10.3389/fendo.2014.00161
Bolos M, Fernandez S, Torres-Aleman I (2010) Oral administration of a GSK3 inhibitor increases brain insulin-like growth factor I levels. J Biol Chem 285(23):17693–17700. https://doi.org/10.1074/jbc.M109.096594
Article CAS PubMed Central PubMed Google Scholar
Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M, Rossi G, Eleuteri AM (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43. https://doi.org/10.1016/j.neurobiolaging.2019.11.004
Article CAS PubMed Google Scholar
Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296(4):581–591. https://doi.org/10.1152/ajpendo.90437.2008
Cao Z, Min J, Tan Q, Si K, Yang H, Xu C (2023) Circulating insulin-like growth factor-1 and brain health: Evidence from 369,711 participants in the UK Biobank. Alzheimer’s Res Ther 15(1):140. https://doi.org/10.1186/s13195-023-01288-5
Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, Torres-Aleman I (2006) Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 27(9):1250–1257. https://doi.org/10.1016/j.neurobiolaging.2005.06.015
Article CAS PubMed Google Scholar
Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-β levels. Nat Med 8(12):1390–1397. https://doi.org/10.1038/nm1202-793
Article CAS PubMed Google Scholar
Chávez V, Mohri-Shiomi A, Maadani A, Vega LA, Garsin DA (2007) Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176(3):1567–1577. https://doi.org/10.1534/genetics.107.072587
Article CAS PubMed Central PubMed Google Scholar
Chen F, Lu K, Bai N, Hao Y, Wang H, Zhao X, Yue F (2024) Oral administration of ellagic acid mitigates perioperative neurocognitive disorders, hippocampal oxidative stress, and neuroinflammation in aged mice by restoring IGF-1 signaling. Sci Rep 14(1):2509. https://doi.org/10.1038/s41598-024-53127-8
Article CAS PubMed Central PubMed Google Scholar
Chen S, Wang T, Yao J, Brinton RD (2020) Allopregnanolone promotes neuronal and oligodendrocyte differentiation in vitro and in vivo: therapeutic implication for Alzheimer’s disease. Neurotherapeutics 17(4):1813–1824. https://doi.org/10.1007/s13311-020-00874-x
Article CAS PubMed Central PubMed Google Scholar
Cheng CM, Tseng V, Wang J, Wang D, Matyakhina L, Bondy CA (2005) Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. Endocrinology 146(12):5086–5091. https://doi.org/10.1210/en.2005-0063
Article CAS PubMed Google Scholar
Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 19(2):317–326. https://doi.org/10.1016/j.intimp.2014.01.018
Article CAS PubMed Google Scholar
Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610. https://doi.org/10.1126/science.1124646
Article CAS PubMed Google Scholar
Cortés N, Andrade V, Guzmán-Martínez L, Estrella M, Maccioni RB (2018) Neuroimmune tau mechanisms: their role in the progression of neuronal degeneration. Int J Mol Sci 19(4):956. https://doi.org/10.3390/ijms19040956
Article CAS PubMed Central PubMed Google Scholar
Costales J, Kolevzon A (2016) The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci Biobehav Rev 63:207–222. https://doi.org/10.1016/j.neubiorev.2016.01.001
Article CAS PubMed Central PubMed Google Scholar
Costantini C, Scrable H, Puglielli L (2006) An aging pathway controls the TrkA to p75NTR receptor switch and amyloid β-peptide generation. EMBO J 25(9):1997–2006. https://doi.org/10.1038/sj.emboj.7601062
Article CAS PubMed Central PubMed Google Scholar
D Skaper S, Facci L, Zusso M, Giusti P (2017) Synaptic plasticity, dementia and Alzheimer disease. CNS Neurol Disord Drug Targets 16(3):220-33
Das TK, Chakrabarti SK, Zulkipli IN, Abdul Hamid MR (2019) Curcumin ameliorates the impaired insulin signaling involved in the pathogenesis of Alzheimer’s disease in rats. J Alzheimer’s Dis Rep 3(1):59–70. https://doi.org/10.3233/ADR-180091
Comments (0)