Uncovering the intricacies of IGF-1 in Alzheimer’s disease: new insights from regulation to therapeutic targeting

Åberg ND, Brywe KG, Isgaard J (2006) Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 6:53–80. https://doi.org/10.1100/tsw.2006.22

Article  CAS  Google Scholar 

Adlerz L, Holback S, Multhaup G, Iverfeldt K (2007) IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem 282(14):10203–10209. https://doi.org/10.1074/jbc.M611183200

Article  CAS  PubMed  Google Scholar 

Aguado-Llera D, Canelles S, Frago LM, Chowen JA, Argente J, Arilla E, Barrios V (2018) The protective effects of IGF-I against β-amyloid-related downregulation of hippocampal somatostatinergic system involve activation of Akt and protein kinase a. Neuroscience 374:104–118. https://doi.org/10.1016/j.neuroscience.2018.01.041

Article  CAS  PubMed  Google Scholar 

Ano Y, Ohya R, Takaichi Y, Washinuma T, Uchida K, Takashima A, Nakayama H (2020) Β-lactolin, a whey-derived lacto-tetrapeptide, prevents Alzheimer’s disease pathologies and cognitive decline. J Alzheimer’s Dis 73(4):1331–1342. https://doi.org/10.3233/JAD-190997

Article  CAS  Google Scholar 

Arjunan A, Sah DK, Woo M, Song J (2023) Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 13(1):16. https://doi.org/10.1186/s13578-023-00966-z

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bagyinszky E, Van Giau V, Shim K, Suk K, An SS, Kim S (2017) Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci 376:242–254. https://doi.org/10.1016/j.jns.2017.03.031

Article  CAS  PubMed  Google Scholar 

Baker LD, Barsness SM, Borson S, Merriam GR, Friedman SD, Craft S, Vitiello MV (2012) Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch Neurol 69(11):1420–1429. https://doi.org/10.1001/archneurol.2012.1970

Article  PubMed Central  PubMed  Google Scholar 

Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F, Landrieu I (2019) Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci 11:204. https://doi.org/10.3389/fnagi.2019.00204

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bhalla S, Mehan S, Khan A, Rehman MU (2022) Protective role of IGF-1 and GLP-1 signaling activation in neurological dysfunctions. Neurosci Biobehav Rev 142:104896. https://doi.org/10.1016/j.neubiorev.2022.104896

Article  CAS  PubMed  Google Scholar 

Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31(1):292–297. https://doi.org/10.1042/bst0310292

Article  CAS  PubMed  Google Scholar 

Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM (2014) Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 5:161. https://doi.org/10.3389/fendo.2014.00161

Article  Google Scholar 

Bolos M, Fernandez S, Torres-Aleman I (2010) Oral administration of a GSK3 inhibitor increases brain insulin-like growth factor I levels. J Biol Chem 285(23):17693–17700. https://doi.org/10.1074/jbc.M109.096594

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M, Rossi G, Eleuteri AM (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43. https://doi.org/10.1016/j.neurobiolaging.2019.11.004

Article  CAS  PubMed  Google Scholar 

Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296(4):581–591. https://doi.org/10.1152/ajpendo.90437.2008

Article  CAS  Google Scholar 

Cao Z, Min J, Tan Q, Si K, Yang H, Xu C (2023) Circulating insulin-like growth factor-1 and brain health: Evidence from 369,711 participants in the UK Biobank. Alzheimer’s Res Ther 15(1):140. https://doi.org/10.1186/s13195-023-01288-5

Article  CAS  Google Scholar 

Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, Torres-Aleman I (2006) Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 27(9):1250–1257. https://doi.org/10.1016/j.neurobiolaging.2005.06.015

Article  CAS  PubMed  Google Scholar 

Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-β levels. Nat Med 8(12):1390–1397. https://doi.org/10.1038/nm1202-793

Article  CAS  PubMed  Google Scholar 

Chávez V, Mohri-Shiomi A, Maadani A, Vega LA, Garsin DA (2007) Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176(3):1567–1577. https://doi.org/10.1534/genetics.107.072587

Article  CAS  PubMed Central  PubMed  Google Scholar 

Chen F, Lu K, Bai N, Hao Y, Wang H, Zhao X, Yue F (2024) Oral administration of ellagic acid mitigates perioperative neurocognitive disorders, hippocampal oxidative stress, and neuroinflammation in aged mice by restoring IGF-1 signaling. Sci Rep 14(1):2509. https://doi.org/10.1038/s41598-024-53127-8

Article  CAS  PubMed Central  PubMed  Google Scholar 

Chen S, Wang T, Yao J, Brinton RD (2020) Allopregnanolone promotes neuronal and oligodendrocyte differentiation in vitro and in vivo: therapeutic implication for Alzheimer’s disease. Neurotherapeutics 17(4):1813–1824. https://doi.org/10.1007/s13311-020-00874-x

Article  CAS  PubMed Central  PubMed  Google Scholar 

Cheng CM, Tseng V, Wang J, Wang D, Matyakhina L, Bondy CA (2005) Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. Endocrinology 146(12):5086–5091. https://doi.org/10.1210/en.2005-0063

Article  CAS  PubMed  Google Scholar 

Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 19(2):317–326. https://doi.org/10.1016/j.intimp.2014.01.018

Article  CAS  PubMed  Google Scholar 

Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610. https://doi.org/10.1126/science.1124646

Article  CAS  PubMed  Google Scholar 

Cortés N, Andrade V, Guzmán-Martínez L, Estrella M, Maccioni RB (2018) Neuroimmune tau mechanisms: their role in the progression of neuronal degeneration. Int J Mol Sci 19(4):956. https://doi.org/10.3390/ijms19040956

Article  CAS  PubMed Central  PubMed  Google Scholar 

Costales J, Kolevzon A (2016) The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci Biobehav Rev 63:207–222. https://doi.org/10.1016/j.neubiorev.2016.01.001

Article  CAS  PubMed Central  PubMed  Google Scholar 

Costantini C, Scrable H, Puglielli L (2006) An aging pathway controls the TrkA to p75NTR receptor switch and amyloid β-peptide generation. EMBO J 25(9):1997–2006. https://doi.org/10.1038/sj.emboj.7601062

Article  CAS  PubMed Central  PubMed  Google Scholar 

D Skaper S, Facci L, Zusso M, Giusti P (2017) Synaptic plasticity, dementia and Alzheimer disease. CNS Neurol Disord Drug Targets 16(3):220-33

Das TK, Chakrabarti SK, Zulkipli IN, Abdul Hamid MR (2019) Curcumin ameliorates the impaired insulin signaling involved in the pathogenesis of Alzheimer’s disease in rats. J Alzheimer’s Dis Rep 3(1):59–70. https://doi.org/10.3233/ADR-180091

Comments (0)

No login
gif