Lactylation and Ischemic Stroke: Research Progress and Potential Relationship

Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728. https://doi.org/10.1007/s00421-017-3795-6

Article  CAS  PubMed  Google Scholar 

Adeva-Andany MM, Pérez-Felpete N, Fernández-Fernández C, Donapetry-García C, Pazos-García C (2016) Liver glucose metabolism in humans. Biosci Rep 36:e00416

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golias T, Kery M, Radenkovic S, Papandreou I (2019) Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. Int J Cancer 144:674–686. https://doi.org/10.1002/ijc.31812

Article  CAS  PubMed  Google Scholar 

Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. https://doi.org/10.1146/annurev-cellbio-092910-154237

Article  CAS  PubMed  Google Scholar 

Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218. https://doi.org/10.1016/j.tibs.2015.12.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Investig 123:3685–3692. https://doi.org/10.1172/jci69741

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX et al (2022) Lactate metabolism in human health and disease. Signal Transduct Target Ther 7:305. https://doi.org/10.1038/s41392-022-01151-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P (2021) Post-translational modifications: regulators of neurodegenerative proteinopathies. Ageing Res Rev 68:101336. https://doi.org/10.1016/j.arr.2021.101336

Article  CAS  PubMed  Google Scholar 

Ramazi S, Zahiri J (2021) Posttranslational modifications in proteins: resources, tools and prediction methods. Database 2021:baab012. https://doi.org/10.1093/database/baab012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S et al (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580. https://doi.org/10.1038/s41586-019-1678-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Wang Z, Wang Q, Li X, Guo Y (2024) Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett 29:23. https://doi.org/10.1186/s11658-024-00541-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millán-Zambrano G, Burton A, Bannister AJ, Schneider R (2022) Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 23:563–580. https://doi.org/10.1038/s41576-022-00468-7

Article  CAS  PubMed  Google Scholar 

Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X et al (2022) Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci 18:6210–6225. https://doi.org/10.7150/ijbs.75434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, Wang H, Song Y et al (2022) Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 82:1660-1677.e1610. https://doi.org/10.1016/j.molcel.2022.02.033

Article  CAS  PubMed  Google Scholar 

Wu Y, Gong P (2024) Scopolamine regulates the osteogenic differentiation of human periodontal ligament stem cells through lactylation modification of RUNX2 protein. Pharmacol Res Perspect 12:e1169. https://doi.org/10.1002/prp2.1169

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong W, Feng J, Li X et al (2023) ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv 9:eadg4993. https://doi.org/10.1126/sciadv.adg4993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z et al (2024) Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 187:294-311.e221. https://doi.org/10.1016/j.cell.2023.11.022

Article  CAS  PubMed  Google Scholar 

Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, Xiang J, He N et al (2023) CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer 22:151. https://doi.org/10.1186/s12943-023-01856-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feigin VL (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20:795–820. https://doi.org/10.1016/s1474-4422(21)00252-0

Article  CAS  Google Scholar 

Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M et al (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7:215. https://doi.org/10.1038/s41392-022-01064-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hochrainer K (2018) Protein modifications with ubiquitin as response to cerebral ischemia-reperfusion injury. Transl Stroke Res 9:157–173. https://doi.org/10.1007/s12975-017-0567-x

Article  CAS  PubMed  Google Scholar 

Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B (2023) The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 191:106726. https://doi.org/10.1016/j.phrs.2023.106726

Article  CAS  PubMed  Google Scholar 

Su Y, Zhang L, Zhou Y, Ding L, Li L, Wang Z (2022) The progress of research on histone methylation in ischemic stroke pathogenesis. J Physiol Biochem 78:1–8. https://doi.org/10.1007/s13105-021-00841-w

Article  PubMed  Google Scholar 

Tang J, Zhuang S (2019) Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (London, England: 1979) 133:597–609. https://doi.org/10.1042/cs20180465

Article  CAS  Google Scholar 

Yao Y, Bade R, Li G, Zhang A, Zhao H, Fan L, Zhu R, Yuan J (2023) Global-scale profiling of differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia-reperfusion injury rats. Cell Mol Neurobiol 43:1989–2004. https://doi.org/10.1007/s10571-022-01277-6

Article  CAS  PubMed  Google Scholar 

Yao X, Li C (2023) Lactate dehydrogenase A mediated histone lactylation induced the pyroptosis through targeting HMGB1. Metab Brain Dis 38:1543–1553. https://doi.org/10.1007/s11011-023-01195-6

Article  CAS  PubMed  Google Scholar 

Zhang W, Xu L, Yu Z, Zhang M, Liu J, Zhou J (2023) Inhibition of the glycolysis prevents the cerebral infarction progression through decreasing the lactylation levels of LCP1. Mol Biotechnol 65:1336–1345. https://doi.org/10.1007/s12033-022-00643-5

Article 

Comments (0)

No login
gif