Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728. https://doi.org/10.1007/s00421-017-3795-6
Article CAS PubMed Google Scholar
Adeva-Andany MM, Pérez-Felpete N, Fernández-Fernández C, Donapetry-García C, Pazos-García C (2016) Liver glucose metabolism in humans. Biosci Rep 36:e00416
Article CAS PubMed PubMed Central Google Scholar
Golias T, Kery M, Radenkovic S, Papandreou I (2019) Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. Int J Cancer 144:674–686. https://doi.org/10.1002/ijc.31812
Article CAS PubMed Google Scholar
Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. https://doi.org/10.1146/annurev-cellbio-092910-154237
Article CAS PubMed Google Scholar
Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218. https://doi.org/10.1016/j.tibs.2015.12.001
Article CAS PubMed PubMed Central Google Scholar
Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Investig 123:3685–3692. https://doi.org/10.1172/jci69741
Article CAS PubMed PubMed Central Google Scholar
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX et al (2022) Lactate metabolism in human health and disease. Signal Transduct Target Ther 7:305. https://doi.org/10.1038/s41392-022-01151-3
Article CAS PubMed PubMed Central Google Scholar
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P (2021) Post-translational modifications: regulators of neurodegenerative proteinopathies. Ageing Res Rev 68:101336. https://doi.org/10.1016/j.arr.2021.101336
Article CAS PubMed Google Scholar
Ramazi S, Zahiri J (2021) Posttranslational modifications in proteins: resources, tools and prediction methods. Database 2021:baab012. https://doi.org/10.1093/database/baab012
Article CAS PubMed PubMed Central Google Scholar
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S et al (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580. https://doi.org/10.1038/s41586-019-1678-1
Article CAS PubMed PubMed Central Google Scholar
Wang J, Wang Z, Wang Q, Li X, Guo Y (2024) Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett 29:23. https://doi.org/10.1186/s11658-024-00541-5
Article CAS PubMed PubMed Central Google Scholar
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R (2022) Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 23:563–580. https://doi.org/10.1038/s41576-022-00468-7
Article CAS PubMed Google Scholar
Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X et al (2022) Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci 18:6210–6225. https://doi.org/10.7150/ijbs.75434
Article CAS PubMed PubMed Central Google Scholar
Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, Wang H, Song Y et al (2022) Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 82:1660-1677.e1610. https://doi.org/10.1016/j.molcel.2022.02.033
Article CAS PubMed Google Scholar
Wu Y, Gong P (2024) Scopolamine regulates the osteogenic differentiation of human periodontal ligament stem cells through lactylation modification of RUNX2 protein. Pharmacol Res Perspect 12:e1169. https://doi.org/10.1002/prp2.1169
Article CAS PubMed PubMed Central Google Scholar
Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong W, Feng J, Li X et al (2023) ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv 9:eadg4993. https://doi.org/10.1126/sciadv.adg4993
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z et al (2024) Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 187:294-311.e221. https://doi.org/10.1016/j.cell.2023.11.022
Article CAS PubMed Google Scholar
Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, Xiang J, He N et al (2023) CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer 22:151. https://doi.org/10.1186/s12943-023-01856-1
Article CAS PubMed PubMed Central Google Scholar
Feigin VL (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20:795–820. https://doi.org/10.1016/s1474-4422(21)00252-0
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M et al (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7:215. https://doi.org/10.1038/s41392-022-01064-1
Article CAS PubMed PubMed Central Google Scholar
Hochrainer K (2018) Protein modifications with ubiquitin as response to cerebral ischemia-reperfusion injury. Transl Stroke Res 9:157–173. https://doi.org/10.1007/s12975-017-0567-x
Article CAS PubMed Google Scholar
Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B (2023) The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 191:106726. https://doi.org/10.1016/j.phrs.2023.106726
Article CAS PubMed Google Scholar
Su Y, Zhang L, Zhou Y, Ding L, Li L, Wang Z (2022) The progress of research on histone methylation in ischemic stroke pathogenesis. J Physiol Biochem 78:1–8. https://doi.org/10.1007/s13105-021-00841-w
Tang J, Zhuang S (2019) Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (London, England: 1979) 133:597–609. https://doi.org/10.1042/cs20180465
Yao Y, Bade R, Li G, Zhang A, Zhao H, Fan L, Zhu R, Yuan J (2023) Global-scale profiling of differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia-reperfusion injury rats. Cell Mol Neurobiol 43:1989–2004. https://doi.org/10.1007/s10571-022-01277-6
Article CAS PubMed Google Scholar
Yao X, Li C (2023) Lactate dehydrogenase A mediated histone lactylation induced the pyroptosis through targeting HMGB1. Metab Brain Dis 38:1543–1553. https://doi.org/10.1007/s11011-023-01195-6
Article CAS PubMed Google Scholar
Zhang W, Xu L, Yu Z, Zhang M, Liu J, Zhou J (2023) Inhibition of the glycolysis prevents the cerebral infarction progression through decreasing the lactylation levels of LCP1. Mol Biotechnol 65:1336–1345. https://doi.org/10.1007/s12033-022-00643-5
Comments (0)